scholarly journals Comparative Analysis Among Different Species Reveals That the Androgen Receptor Regulates Chicken Follicle Selection Through Species-Specific Genes Related to Follicle Development

2022 ◽  
Vol 12 ◽  
Author(s):  
Ying Huang ◽  
Wei Luo ◽  
Xuliang Luo ◽  
Xiaohui Wu ◽  
Jinqiu Li ◽  
...  

The differences in reproductive processes at the molecular level between viviparous and oviparous animals are evident, and the site in the ovary that synthesizes sex hormones (androgens and oestrogens) and the trends for enriching sex hormones during follicle development in chickens are different from those in mammals, suggesting that the effect of sex hormones on follicle development in chickens is probably different from that in viviparous animals. To explore the specific role of androgen receptors (ARs) on chicken follicular development, we matched the correspondence of follicular development stages among chickens, humans, cows and identified chicken-specific genes related to follicle development (GAL-SPGs) by comparing follicle development-related genes and their biological functions among species (chickens, humans, and cows). A comparison of the core transcription factor regulatory network of granulosa cells (or ovaries) based on super-enhancers among species (chicken, human, and mouse) revealed that AR is a core transcriptional regulator specific to chickens. In vivo experiments showed that inhibition of AR significantly reduced the number of syf (selected stage follicles) in chickens and decreased the expression of GAL-SPGs in F5 follicles, while in vitro experiments showed that inhibition of AR expression in chicken granulosa cells (GCs) significantly down-regulated the expression levels of GAL-SPGs, indicating that AR could regulate follicle selection through chicken-specific genes related to follicle development. A comparison among species (77 vertebrates) of the conserved genomic regions, where chicken super-enhancers are located, revealed that the chicken AR super-enhancer region is conserved in birds, suggesting that the role of AR in follicle selection maybe widespread in birds. In summary, we found that AR can regulate follicle selection through chicken-specific genes related to follicle development, which also emphasizes the important role of AR in follicle selection in chickens and provides a new perspective for understanding the unique process of follicle development in chickens. Our study will contribute to the application of androgens to the control of egg production in chickens and suggests that researchers can delve into the mechanisms of follicle development in birds based on androgen/androgen receptors.

1996 ◽  
Vol 5 (3) ◽  
pp. 151-168 ◽  
Author(s):  
Ghanim Almahbobi ◽  
Alan O Trounson

The present review demonstrates that the availability of bioactive FSH and LH in PCOS is normal and that granulosa cells of PCO are not apoptotic and instead hyperexpress functional FSH receptors and may possess intact aromatase activity. Consequently, these cells respond excessively to exogenous FSH stimulation and produce high amounts of oestradiol both in vivo and in vitro. The altered developmental capacity of follicles from PCO in vivo is most likely due to the abnormal follicular milieu of PCO and the culminating effects of intrafollicular inhibitors and stimulators. The failure of ovarian oestradiol production and follicular maturation to dominance in vivo may be due to a mechanism that interferes with the function of FSH, such as intraovarian steroids and growth factors. It has previously been shown that EGF and TGFα have inhibitory actions on follicular development, aromatization and LH receptor formation. In contrast, EGF enhances early follicular recruitment and growth. Therefore, it is hypothesized that EGF/TGFα may have a causal relationship in the mechanisms of anovulatory infertility in women with PCOS. Thus, an aberration in the regulation of follicular fluid EGF and/or TGFα may result in reduced numbers of granulosa cells, cessation of follicle selection and ultimately in the creation and maintenance of PCOS. The exact mechanism by which the hyperfunction of EGF/TGFα occurs and the trigger for this hyperactivity in the ovary remain to be determined. An experimental animal model may be required to assist such investigations in the future.


2017 ◽  
Author(s):  
Daolun Yu ◽  
Fanghui Chen ◽  
Li Zhang ◽  
Hejian Wang ◽  
Jie Chen ◽  
...  

ABSTRACTThe egg production of poultry depends on follicular development and selection. However, the mechanism of selecting the priority of hierarchical follicles is completely unknown. Smad9 is one of the important transcription factors in BMP/Smads pathway and involved in goose follicular initiation. To explore its potential role in goose follicle hierarchy determination, we first blocked Smad9 expression using BMP typeⅠreceptor inhibitor LDN–193189 both in vivo and in vitro. Unexpectedly, LDN–193189 administration could dramatically suppress Smad9 level and elevate egg production (7.08 eggs / bird, P< 0.05) of animals, and the estradiol (E2) and luteinizing hormone receptor (LHR) level were significantly increased (P< 0.05), but the progesterone (P4) and follicle stimulating hormone receptor (FSHR) mRNA remain unchanged. Surprisingly, Smad9 knockdown notably attenuated (P< 0.05) in E2, P4, FSHR and LHR level in goose granulosa cells (gGCs). Further chromatin immunoprecipitation (ChIP) assay of gGCs revealed that Smad9, served as a sensor of balance, bound to the LHR promoter regulating its transcription. These findings demonstrated that Smad9 is differentially expressed in goose follicles, and acts as a key player in controlling goose follicular selection.SUMMARY STATEMENTTo study the hierarchical development mechanism of avian follicle, new strategies can be found to improve the egg production of low-yielding poultry, such as geese.


2002 ◽  
Vol 172 (1) ◽  
pp. 45-59 ◽  
Author(s):  
F Le Bellego ◽  
C Pisselet ◽  
C Huet ◽  
P Monget ◽  
D Monniaux

This study aimed to determine the physiological role of laminin (LN) and its receptor, alpha(6)beta(1) integrin, in controlling the functions of granulosa cells (GC) during follicular development in sheep ovary. Immunohistochemistry experiments showed the presence of increasing levels of LN (P<0.0001), and high levels of mature alpha(6)beta(1) integrin in GC layers of healthy antral follicles during the follicular and the preovulatory phases of the estrous cycle. In vitro, the addition of a function-blocking antibody raised against alpha(6) subunit (anti-alpha(6) IgG) to the medium of ovine GC cultured on LN impaired cell spreading (P<0.0001), decreased the proliferation rate (P<0.05) and increased the apoptosis rate (P<0.05). Furthermore, addition of anti-alpha(6) IgG enhanced estradiol (E2) secretion by GC in the presence or absence of follicle-stimulating hormone (FSH), luteinizing hormone or insulin-like growth factor-I in culture medium (P<0.0001), and inhibited progesterone (P4) secretion in basal conditions or in the presence of low (0.5 ng/ml) FSH concentrations only (P<0.0001). The anti-alpha(6) IgG effect was specific to an interaction of LN with alpha(6)beta(1) integrin since it was ineffective on GC cultured on heat-denatured LN, RGD (arginine-glycine-aspartic acid) peptides and non-coated substratum. Hence, this study established that alpha(6)beta(1) integrin 1) was expressed in GC of antral follicles, 2) mediated the actions of LN on survival, proliferation and steroidogenesis of GC, and 3) was able to dramatically modulate P4 and E2 secretion by GC in vitro. It is suggested that during the follicular and the preovulatory phases of the estrous cycle, the increasing levels of LN in GC of large antral follicles might support their final development to ovulation.


Reproduction ◽  
2013 ◽  
Vol 146 (3) ◽  
pp. 273-282 ◽  
Author(s):  
S N Schauer ◽  
S D Sontakke ◽  
E D Watson ◽  
C L Esteves ◽  
F X Donadeu

Previous evidence fromin vitrostudies suggests specific roles for a subset of miRNAs, including miR-21, miR-23a, miR-145, miR-503, miR-224, miR-383, miR-378, miR-132, and miR-212, in regulating ovarian follicle development. The objective of this study was to determine changes in the levels of these miRNAs in relation to follicle selection, maturation, and ovulation in the monovular equine ovary. In Experiment 1, follicular fluid was aspirated during ovulatory cycles from the dominant (DO) and largest subordinate (S) follicles of an ovulatory wave and the dominant (DA) follicle of a mid-cycle anovulatory wave (n=6 mares). Follicular fluid levels of progesterone and estradiol were lower (P<0.01) in S follicles than in DO follicles, whereas mean levels of IGF1 were lower (P<0.01) in S and DA follicles than in DO follicles. Relative to DO and DA follicles, S follicles had higher (P≤0.01) follicular fluid levels of miR-145 and miR-378. In Experiment 2, follicular fluid and granulosa cells were aspirated from dominant follicles before (DO) and 24 h after (L) administration of an ovulatory dose of hCG (n=5 mares/group). Relative to DO follicles, L follicles had higher follicular fluid levels of progesterone (P=0.05) and lower granulosa cell levels ofCYP19A1andLHCGR(P<0.005). Levels of miR-21, miR-132, miR-212, and miR-224 were increased (P<0.05) in L follicles; this was associated with reduced expression of the putative miRNA targets,PTEN,RASA1, andSMAD4. These novel results may indicate a physiological involvement of miR-21, miR-145, miR-224, miR-378, miR-132, and miR-212 in the regulation of cell survival, steroidogenesis, and differentiation during follicle selection and ovulation in the monovular ovary.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Sujen Eleonora Santini ◽  
Giuseppina Basini ◽  
Simona Bussolati ◽  
Francesca Grasselli

Experimental evidence documents that nutritional phytoestrogens may interact with reproductive functions but the exact mechanism of action is still controversial. Since quercetin is one of the main flavonoids in livestock nutrition, we evaluated its possible effects on cultured swine granulosa cell proliferation, steroidogenesis, and redox status. Moreover, since angiogenesis is essential for follicle development, the effect of the flavonoid on Vascular Endothelial Growth Factor output by granulosa cells was also taken into account. Our data evidence that quercetin does not affect granulosa cell growth while it inhibits progesterone production and modifies estradiol production in a dose-related manner. Additionally, the flavonoid interferes with the angiogenic process by inhibiting VEGF production as well as by altering redox status. Since steroidogenesis and angiogenesis are strictly involved in follicular development, these findings appear particularly relevant, pointing out a possible negative influence of quercetin on ovarian physiology. Therefore, the possible reproductive impact of the flavonoid should be carefully considered in animal nutrition.


Author(s):  
Zonghao Tang ◽  
Renfeng Xu ◽  
Zhenghong Zhang ◽  
Congjian Shi ◽  
Yan Zhang ◽  
...  

Owing to the avascular structure of the ovarian follicle, proliferation of granulosa cells (GCs) and development of follicles occur under hypoxia, which is obviously different from the cell survival requirements of most mammalian cells. We hypothesized that autophagy may exert an inhibitory effect on GC apoptosis. To decipher the underlying mechanism, we constructed a rat follicular development model using pregnant mare serum gonadotropin and a cell culture experiment in hypoxic conditions (3% O2). The present results showed that the autophagy level was obviously increased and was accompanied by the concomitant elevation of hypoxia inducible factor (HIF)-1α and BNIP3 (Bcl-2/adenovirus E1B 19kDa-interacting protein 3) in GCs during follicular development. The levels of Bax (Bcl2-associated X) and Bcl-2 (B-cell lymphoma-2) were increased, while the activation of caspase-3 exhibited no obvious changes during follicular development. However, inhibition of HIF-1α attenuated the increase in Bcl-2 and promoted the increase in Bax and cleaved caspase-3. Furthermore, we observed the downregulation of BNIP3 and the decrease in autophagy after treatment with a specific HIF-1α activity inhibitor (echinomycin), indicating that HIF-1α/BNIP3 was involved in autophagy regulation in GCs in vivo. In an in vitro study, we also found that hypoxia did not obviously promote GC apoptosis, while it significantly enhanced the activation of HIF-1α/BNIP3 and the induction of autophagy. Expectedly, this effect could be reversed by 3-methyladenine (3-MA) treatment. Taken together, these findings demonstrated that hypoxia drives the activation of HIF-1α/BNIP3 signaling, which induces an increase in autophagy, protecting GC from apoptosis during follicular development.


Endocrinology ◽  
2019 ◽  
Vol 160 (5) ◽  
pp. 1166-1174 ◽  
Author(s):  
Olga Astapova ◽  
Briaunna M N Minor ◽  
Stephen R Hammes

Abstract Androgens, although traditionally thought to be male sex steroids, play important roles in female reproduction, both in healthy and pathological states. This mini-review focuses on recent advances in our knowledge of the role of androgens in the ovary. Androgen receptor (AR) is expressed in oocytes, granulosa cells, and theca cells, and is temporally regulated during follicular development. Mouse knockout studies have shown that AR expression in granulosa cells is critical for normal follicular development and subsequent ovulation. In addition, androgens are involved in regulating dynamic changes in ovarian steroidogenesis that are critical for normal cycling. Androgen effects on follicle development have been incorporated into clinical practice in women with diminished ovarian reserve, albeit with limited success in available literature. At the other extreme, androgen excess leads to disordered follicle development and anovulatory infertility known as polycystic ovary syndrome (PCOS), with studies suggesting that theca cell AR may mediate many of these negative effects. Finally, both prenatal and postnatal animal models of androgen excess have been developed and are being used to study the pathophysiology of PCOS both within the ovary and with regard to overall metabolic health. Taken together, current scientific consensus is that a careful balance of androgen activity in the ovary is necessary for reproductive health in women.


2020 ◽  
Vol 35 (7) ◽  
pp. 1655-1665
Author(s):  
Soledad Henríquez ◽  
Paulina Kohen ◽  
Xia Xu ◽  
Claudio Villarroel ◽  
Alex Muñoz ◽  
...  

Abstract STUDY QUESTION Do alterations in pro- and anti-angiogenic estrogen metabolites in follicular fluid (FF) contribute to the follicular growth arrest and anovulation associated with polycystic ovary syndrome (PCOS)? SUMMARY ANSWER FF of PCOS women with anovulation have reduced levels of pro-angiogenic estrogen metabolites (EMs) and vascular endothelial growth factor (VEGF) compared to that of fertile women with regular menstrual cycles, but exogenous gonadotropins increase the pro-angiogenic EMs and VEGF levels in PCOS women. WHAT IS KNOWN ALREADY PCOS is characterized by the arrest of follicular development that leads to chronic anovulation. Follicular arrest is generally associated with elevated plasma levels of luteinizing hormone (LH), androgens and anti-Mullerian hormone (AMH). There is also reduced angiogenesis in the follicles of PCOS women compared to those of normal cycling women. It is known that angiogenesis is a critical factor during follicular development. We and other investigators have explored the role of EMs in ovarian angiogenesis, particularly in human corpus luteum function, showing that 4-hydroxyestrone (4-OHE1) and 16-ketoestradiol (16-kE2) have pro-angiogenic effects while 2-methoxyestradiol (2-ME2) and 2-methoxyestrone (2-ME1) have anti-angiogenic effects. Additionally, 2-hydroxyestradiol (2-OHE2), which is produced in the ovary, has proliferative and pro-angiogenic properties. We hypothesized that EMs could be involved in angiogenesis necessary for ovarian follicular development in fertile women, and that dysregulation of these factors may contribute to follicular arrest in PCOS. The relationship between EMs, VEGF and AMH in the pathophysiology of follicular arrest in PCOS has not been previously studied at a follicular level in anovulatory women without ovulation induction. STUDY DESIGN, SIZE, DURATION This is a comparative experimental study of serum and FF collected from different sized follicles (antral ˂10 mm and dominant ˃16 mm) of women with and without ovarian stimulation. The study included women with regular menstrual cycles who were proven to be fertile (n = 20) and PCOS women with follicular arrest who were candidates for ovarian drilling (n = 17), as well as other patients requiring ovarian stimulation, i.e. control women undergoing IVF for male factor infertility (n = 12) and PCOS women undergoing IVF (n = 17). In vitro studies were carried out on granulosa-lutein cells (GCs) obtained from subsets of women undergoing IVF for male factor infertility (n = 6) and PCOS women undergoing IVF (n = 6). GCs were maintained in culture for up to 6 days. PARTICIPANTS/MATERIALS, SETTING, METHODS Intrafollicular estradiol, estrone and EMs concentrations were determined by high performance liquid chromatography–mass spectrometry. Testosterone in serum was measured by RIA, and LH, FSH and sex hormone-binding globulin in serum were measured with IRMA kits. AMH was determined in serum and FF by enzyme linked immunosorbant assay (ELISA). VEGF levels were measured in FF and conditioned medium by ELISA. Conditioned medium were obtained from cultured GCs. The angiogenic potential was assessed by in vitro angiogenic assays. MAIN RESULTS AND THE ROLE OF CHANCE Pro-angiogenic EMs (4-OHE1, 16-kE2 and 2-OHE2) and VEGF were lower in FF of antral follicles of PCOS women with follicular arrest compared those of fertile women with ovulatory cycles (P &lt; 0.05). In contrast, higher concentrations of AMH were found in FF of antral follicles from PCOS women with follicular arrest compared to those of fertile women with ovulatory cycles (P &lt; 0.05). Exogenous gonadotropins used in IVF increased pro-angiogenic EMs and VEGF production in PCOS women, reaching similar profiles compared to control women receiving gonadotropins in their IVF treatment for male factor infertility. The pro-angiogenic EM 2-OHE2 increased the angiogenic potential and VEGF levels of GCs from PCOS women compared to the basal condition (P &lt; 0.05). These findings suggest that there is a role for pro-angiogenic EMs in the control of follicular VEGF production. LIMITATIONS, REASONS FOR CAUTION The limitations include the possibility that in vitro analysis of GCs might not reflect the in vivo mechanisms involved in the pro-angiogenic action of 2-OHE2 since GCs obtained at the time of oocyte retrieval belong to a very early stage of the luteal phase and might not be representative of GCs during follicular growth. Therefore, our findings do not conclusively rule out the possibility that other in vivo mechanisms also account for defective angiogenesis observed in PCOS. WIDER IMPLICATIONS OF THE FINDINGS The present study highlights the significance of EMs, angiogenic factors and AMH and their interaction in the pathophysiology of follicular development in PCOS. This study provides new insights into the role of pro-angiogenic factors in follicular arrest in PCOS. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by CONICYT/FONDECYT 1140693 and NIH grant R01HD083323. All authors declare no conflict of interest. TRIAL REGISTRATION NUMBER N/A


2018 ◽  
Vol 239 (1) ◽  
pp. 81-91 ◽  
Author(s):  
V Squicciarini ◽  
R Riquelme ◽  
K Wilsterman ◽  
G E Bentley ◽  
H E Lara

RFamide-related peptide (RFRP-3) is a regulator of GnRH secretion from the brain, but it can also act in human ovary to influence steroidogenesis. We aimed to study the putative local role of RFRP-3 in the ovary and its potential participation in the development of a polycystic ovary phenotype induced by chronic sympathetic stress (cold stress). We used adult Sprague–Dawley rats divided into control and stressed groups. In both groups, we studied the effect of intraovarian exposure to RFRP-3 on follicular development and plasma ovarian steroid concentrations. We also tested the effect of RFRP-3 on ovarian steroid production in vitro. Chronic in vivo intraovarian exposure to RFRP-3 decreased basal testosterone concentrations and cold stress-induced progesterone production by the ovary. In vitro, RFRP-3 decreased hCG-induced ovarian progesterone and testosterone secretion. Immunohistochemistry and mRNA expression analysis showed a decrease in Rfrp and expression of its receptor in the ovary of stressed rats, a result which is in line with the increased testosterone levels found in stressed rats. In vivo application of RFRP-3 recovered the low levels of secondary and healthy antral follicles found in stressed rats. Taken together, our data indicate a previously unknown response of hypothalamic and ovarian RFRP-3 to chronic cold stress, influencing ovarian steroidogenesis and follicular dynamics. Thus, it is likely that RFRP-3 modulation in the ovary is a key component of development of the polycystic ovary phenotype.


Sign in / Sign up

Export Citation Format

Share Document