scholarly journals Laminin-alpha6beta1 integrin interaction enhances survival and proliferation and modulates steroidogenesis of ovine granulosa cells

2002 ◽  
Vol 172 (1) ◽  
pp. 45-59 ◽  
Author(s):  
F Le Bellego ◽  
C Pisselet ◽  
C Huet ◽  
P Monget ◽  
D Monniaux

This study aimed to determine the physiological role of laminin (LN) and its receptor, alpha(6)beta(1) integrin, in controlling the functions of granulosa cells (GC) during follicular development in sheep ovary. Immunohistochemistry experiments showed the presence of increasing levels of LN (P<0.0001), and high levels of mature alpha(6)beta(1) integrin in GC layers of healthy antral follicles during the follicular and the preovulatory phases of the estrous cycle. In vitro, the addition of a function-blocking antibody raised against alpha(6) subunit (anti-alpha(6) IgG) to the medium of ovine GC cultured on LN impaired cell spreading (P<0.0001), decreased the proliferation rate (P<0.05) and increased the apoptosis rate (P<0.05). Furthermore, addition of anti-alpha(6) IgG enhanced estradiol (E2) secretion by GC in the presence or absence of follicle-stimulating hormone (FSH), luteinizing hormone or insulin-like growth factor-I in culture medium (P<0.0001), and inhibited progesterone (P4) secretion in basal conditions or in the presence of low (0.5 ng/ml) FSH concentrations only (P<0.0001). The anti-alpha(6) IgG effect was specific to an interaction of LN with alpha(6)beta(1) integrin since it was ineffective on GC cultured on heat-denatured LN, RGD (arginine-glycine-aspartic acid) peptides and non-coated substratum. Hence, this study established that alpha(6)beta(1) integrin 1) was expressed in GC of antral follicles, 2) mediated the actions of LN on survival, proliferation and steroidogenesis of GC, and 3) was able to dramatically modulate P4 and E2 secretion by GC in vitro. It is suggested that during the follicular and the preovulatory phases of the estrous cycle, the increasing levels of LN in GC of large antral follicles might support their final development to ovulation.

1981 ◽  
Vol 97 (4) ◽  
pp. 543-550 ◽  
Author(s):  
Vasant V. Patwardhan ◽  
André Lanthier

Abstract. The possible role of prostaglandins of the PGE and PGF series in the follicular compartment of human ovaries or the capacity of that tissue to form them is not well defined. In the present experiment we have examined 1) the endogenous concentrations of PGE and PGF in follicles of human ovaries at various stages of the menstrual cycle, 2) the capacity of separated theca and granulosa to form PGE and PGF in vitro in the presence of substrate arachidonic acid and 3) the possible modulation of that capacity by previous in vitro exposure to hCG (10 IU) alone or in combination with hMG (5 IU). PGE and PGF were determined by radioimmunoassay. Follicles from all stages of the cycle were found to contain measurable amounts of PGE (0.10–3.75 ng/follicle) and PGF (0.13–1.11 ng/follicle). These compounds were localized more in the theca than the granulosa cells. On a per follicle basis theca showed more capacity to form PGE and PGF in vitro than the corresponding granulosa cells. However, exposure to gonadotrophins stimulated PGE and PGF formation in the granulosa cells and not in the theca. The presence of PGE and PGF in the follicles indicates a physiological role for these compounds in that tissue. Although thecal tissue showed a greater intrinsic capacity to form PGE and PGF, the contribution of granulosa cells may be more important under acute gonadotrophin stimulation.


Reproduction ◽  
2010 ◽  
Vol 140 (2) ◽  
pp. 287-294 ◽  
Author(s):  
Kenneth P McNatty ◽  
Derek A Heath ◽  
Norma L Hudson ◽  
Karen L Reader ◽  
Laurel Quirke ◽  
...  

In mammals with a low ovulation rate phenotype, ovarian follicular development is thought to be hierarchical with few, if any, antral follicles at similar stages of development. The hypothesis being tested herein was that if most follicles are in a functionally different state, then the application of exogenous hormones to increase ovulation rate will not overcome the hierarchical nature of follicular development. Using sheep as the experimental model, the functional states of all non-atretic antral follicles ≥2 mm diameter were assessed in individual ewes (N=10/group) during anoestrus with or without pregnant mare's serum gonadotrophin (PMSG) treatment, or after a standard superovulation regimen, or during the follicular phase of the oestrous cycle. The functional states of these follicles were assessed by measuring the FSH- or human chorionic gonadotrophin (hCG)-induced cAMP responses of granulosa cellsin vitro. There were significant overall effects across the treatment groups on the responses of granulosa cells to either FSH or LH (bothP<0.001). It was concluded that for anoestrous ewes with or without PMSG treatment, and ewes during the follicular phase, granulosa cell populations of many follicles (≥2 mm diameter) did not share a similar cAMP response to FSH (∼50% of follicles) or hCG (>90% of follicles) either on a per cell or total cell basis. After superovulation, ≤30 and 10% respectively of the granulosa cell populations shared similar responses to FSH and LH with regard to follicular diameter and cAMP output. Thus, exogenous hormone treatments used routinely for increasing oocyte yield do not effectively override the hierarchical pattern of ovarian follicular development during the follicular phase.


2020 ◽  
Vol 32 (3) ◽  
pp. 259 ◽  
Author(s):  
Xiaomeng Gao ◽  
Jinbi Zhang ◽  
Zengxiang Pan ◽  
Qifa Li ◽  
Honglin Liu

The involvement of vascular endothelial growth factor A (VEGFA) in ovarian physiological processes has been widely reported, but the location and role of VEGFA during follicular atresia remain unknown. This study investigated the distribution and expression of VEGFA during porcine follicular development and atresia. Pig ovaries were obtained, individual medium-sized (3–5mm in diameter) antral follicles were separated and classified into healthy, early atretic or progressively atretic groups. Immunobiology and quantitative techniques were used to investigate the varied follicular distribution of VEGFA at both the morphological and molecular level. The results indicated that VEGFA protein expression peaked in tertiary follicles, mostly distributed in the thecal and inner granulosa layers, during follicular development while VEGFA mRNA was mainly expressed in the inner granulosa layers. Additionally, healthy antral follicles showed a significantly higher expression of VEGFA than atretic follicles in both theca and granulosa cells. Knockdown of VEGFA using siRNA revealed an antiapoptosis effect of VEGFA in cultured pig granulosa cells. Our results increase the knowledge of VEGFA functions in follicles.


1996 ◽  
Vol 5 (3) ◽  
pp. 151-168 ◽  
Author(s):  
Ghanim Almahbobi ◽  
Alan O Trounson

The present review demonstrates that the availability of bioactive FSH and LH in PCOS is normal and that granulosa cells of PCO are not apoptotic and instead hyperexpress functional FSH receptors and may possess intact aromatase activity. Consequently, these cells respond excessively to exogenous FSH stimulation and produce high amounts of oestradiol both in vivo and in vitro. The altered developmental capacity of follicles from PCO in vivo is most likely due to the abnormal follicular milieu of PCO and the culminating effects of intrafollicular inhibitors and stimulators. The failure of ovarian oestradiol production and follicular maturation to dominance in vivo may be due to a mechanism that interferes with the function of FSH, such as intraovarian steroids and growth factors. It has previously been shown that EGF and TGFα have inhibitory actions on follicular development, aromatization and LH receptor formation. In contrast, EGF enhances early follicular recruitment and growth. Therefore, it is hypothesized that EGF/TGFα may have a causal relationship in the mechanisms of anovulatory infertility in women with PCOS. Thus, an aberration in the regulation of follicular fluid EGF and/or TGFα may result in reduced numbers of granulosa cells, cessation of follicle selection and ultimately in the creation and maintenance of PCOS. The exact mechanism by which the hyperfunction of EGF/TGFα occurs and the trigger for this hyperactivity in the ovary remain to be determined. An experimental animal model may be required to assist such investigations in the future.


1992 ◽  
Vol 127 (5) ◽  
pp. 466-470 ◽  
Author(s):  
Elikplimi K Asem ◽  
Jacqueline A Carnegie ◽  
Benjamin K Tsang

In vitro studies were conducted to investigate the role of chicken ovarian granulosa cells in the production of fibronectin, a component of the basal lamina of ovarian follicles. Collagenase dispersed granulosa cells obtained from the first (F1; about 35 mm in diameter) and third (F3; 15–20 mm in diameter) largest preovulatory follicles, as well as from a pool of small yellow follicles (SF; 6–10 mm in diameter), were incubated in serum-free medium-199 for 24 to 96 h in the absence and presence of luteinizing hormone (LH) or forskolin. Fibronectin secreted in the medium was quantitated by enzyme linked immunosorbent assay. Basal fibronectin production (which increased with the duration of incubation) was significantly greater (p<0.001) in granulosa cells derived from mature follicle (F1) than in F3 or SF cells. Both LH and forskolin stimulated fibronectin production in SF and F3 cells in a dose-dependent manner; however, they were without effect in F1 cells. The magnitude of increase in fibronectin production elicited by LH or forskolin was greater in SF cells than in F3 cells. The cytoplasm of cultured granulosa cells taken at all stages of follicular development stained positively for fibronectin. These findings indicate that chicken granulosa cells produce fibronectin. This ability is acquired early in follicular development and the stimulatory effect of the gonadotropin (LH) diminished as the follicle approached ovulation.


Zygote ◽  
1998 ◽  
Vol 6 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Xiangju Shen ◽  
Takashi Miyano ◽  
Seishiro Kato

SummaryPig oocyte–cumulus–granulosa cell complexes (OCG complexes) from pig early antral follicles reorganise an antrum under the stimulation of FSH. The purpose of this study was to examine the role of the oocytes in antrum formation. In the first experiment, oocyte–cumulus complexes were removed from pig OCG complexes, and the antrum formation of parietal granulosa cells themselves (PGs) was examined. Antrum formation by sham-operated OCG complexes (OC/G complexes), in which the connections between the oocyte–cumulus complexes and the parietal granulosa cells had been disrupted, was also examined. The complexes were cultured for 8 days in collagen gels in the presence of 10ng/ml FSH. Antra were formed in about 60% of the intact OCG complexes and the sham-operated OCG complexes, while only 20% of the PGs formed antra. In the second experiment, oocyte–cumulus complexes in the OCG complexes were replaced by denuded oocytes (O/G complexes) or Sephadex G-25 beads (B/G complexes) similar in diameter to the oocytes, and the two types of complexes were cultured under the same conditions. The O/G complexes formed antra to a similar extent as the OC/G complexes, whereas the B/G complexes scarcely formed any antra. The histological sections showed that the granulosa cells in the OC/G and O/G complexes were in intimate contact with each other and retained a shape similar to those in the ovarian follicles, while the granulosa cells in the PGs and B/G complexes became quite irregular in shape. These results suggest that pig oocytes promote contact between the granulosa cells to induce antrum formation in a physiological manner.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ying Huang ◽  
Wei Luo ◽  
Xuliang Luo ◽  
Xiaohui Wu ◽  
Jinqiu Li ◽  
...  

The differences in reproductive processes at the molecular level between viviparous and oviparous animals are evident, and the site in the ovary that synthesizes sex hormones (androgens and oestrogens) and the trends for enriching sex hormones during follicle development in chickens are different from those in mammals, suggesting that the effect of sex hormones on follicle development in chickens is probably different from that in viviparous animals. To explore the specific role of androgen receptors (ARs) on chicken follicular development, we matched the correspondence of follicular development stages among chickens, humans, cows and identified chicken-specific genes related to follicle development (GAL-SPGs) by comparing follicle development-related genes and their biological functions among species (chickens, humans, and cows). A comparison of the core transcription factor regulatory network of granulosa cells (or ovaries) based on super-enhancers among species (chicken, human, and mouse) revealed that AR is a core transcriptional regulator specific to chickens. In vivo experiments showed that inhibition of AR significantly reduced the number of syf (selected stage follicles) in chickens and decreased the expression of GAL-SPGs in F5 follicles, while in vitro experiments showed that inhibition of AR expression in chicken granulosa cells (GCs) significantly down-regulated the expression levels of GAL-SPGs, indicating that AR could regulate follicle selection through chicken-specific genes related to follicle development. A comparison among species (77 vertebrates) of the conserved genomic regions, where chicken super-enhancers are located, revealed that the chicken AR super-enhancer region is conserved in birds, suggesting that the role of AR in follicle selection maybe widespread in birds. In summary, we found that AR can regulate follicle selection through chicken-specific genes related to follicle development, which also emphasizes the important role of AR in follicle selection in chickens and provides a new perspective for understanding the unique process of follicle development in chickens. Our study will contribute to the application of androgens to the control of egg production in chickens and suggests that researchers can delve into the mechanisms of follicle development in birds based on androgen/androgen receptors.


Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 493
Author(s):  
 Chung-Yu Chen ◽  
Chien-Rung Chen ◽  
Chiao-Nan Chen ◽  
Paulus S. Wang ◽  
Toby Mündel ◽  
...  

The purpose of this study is to evaluate the amphetamine effects on progesterone and estradiol production in rat granulosa cells and the underlying cellular regulatory mechanisms. Freshly dispersed rat granulosa cells were cultured with various test drugs in the presence of amphetamine, and the estradiol/progesterone production and the cytosolic cAMP level were measured. Additionally, the cytosolic-free Ca2+ concentrations ([Ca2+]i) were measured to examine the role of Ca2+ influx in the presence of amphetamine. Amphetamine in vitro inhibited both basal and porcine follicle-stimulating hormone-stimulated estradiol/progesterone release, and amphetamine significantly decreased steroidogenic enzyme activities. Adding 8-Bromo-cAMP did not recover the inhibitory effects of amphetamine on progesterone and estradiol release. H89 significantly decreased progesterone and estradiol basal release but failed to enhance a further amphetamine inhibitory effect. Amphetamine was capable of further suppressing the release of estradiol release under the presence of nifedipine. Pretreatment with the amphetamine for 2 h decreased the basal [Ca2+]i and prostaglandin F2α-stimulated increase of [Ca2+]i. Amphetamine inhibits progesterone and estradiol secretion in rat granulosa cells through a mechanism involving decreased PKA-downstream steroidogenic enzyme activity and L-type Ca2+ channels. Our current findings show that it is necessary to study the possibility of amphetamine perturbing reproduction in females.


2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Baoyun Zhang ◽  
Long Chen ◽  
Guangde Feng ◽  
Wei Xiang ◽  
Ke Zhang ◽  
...  

Ovaries, which provide a place for follicular development and oocyte maturation, are important organs in female mammals. Follicular development is complicated physiological progress mediated by various regulatory factors including microRNAs (miRNAs). To demonstrate the role of miRNAs in follicular development, this study analyzed the expression patterns of miRNAs in granulosa cells through investigating three previous datasets generated by Illumina miRNA deep sequencing. Furthermore, via bioinformatic analyses, we dissected the associated functional networks of the observed significant miRNAs, in terms of interacting with signal pathways and transcription factors. During the growth and selection of dominant follicles, 15 dysregulated miRNAs and 139 associated pathways were screened out. In comparison of different styles of follicles, 7 commonly abundant miRNAs and 195 pathways, as well as 10 differentially expressed miRNAs and 117 pathways in dominant follicles in comparison with subordinate follicles, were collected. Furthermore, SMAD2 was identified as a hub factor in regulating follicular development. The regulation of miR-26a/b onsmad2messenger RNA has been further testified by real time PCR. In conclusion, we established functional networks which play critical roles in follicular development including pivotal miRNAs, pathways, and transcription factors, which contributed to the further investigation about miRNAs associated with mammalian follicular development.


Reproduction ◽  
2010 ◽  
Vol 140 (2) ◽  
pp. 295-303 ◽  
Author(s):  
Jennifer L Juengel ◽  
Lisa J Haydon ◽  
Brigitta Mester ◽  
Brian P Thomson ◽  
Michael Beaumont ◽  
...  

IGFs are known to be key regulators of ovarian follicular growth in eutherian mammals, but little is known regarding their role in marsupials. To better understand the potential role of IGFs in the regulation of follicular growth in marsupials, expression of mRNAs encoding IGF1, IGF2, IGF1R, IGF-binding protein 2 (IGFBP2), IGFBP4 and IGFBP5 was localized by in situ hybridization in developing ovarian follicles of the brushtail possum. In addition, the effects of IGF1 and IGF2 on granulosa cell function were tested in vitro. Both granulosa and theca cells synthesize IGF mRNAs, with the theca expressing IGF1 mRNA and granulosa cell expressing IGF2 mRNA. Oocytes and granulosa cells express IGF1R. Granulosa and theca cells expressed IGFBP mRNAs, although the pattern of expression differed between the BPs. IGFBP5 mRNA was differentially expressed as the follicles developed with granulosa cells of antral follicles no longer expressing IGFBP5 mRNA, suggesting an increased IGF bioavailability in the antral follicle. The IGFBP protease, PAPPA mRNA, was also expressed in granulosa cells of growing follicles. Both IGF1 and IGF2 stimulated thymidine incorporation but had no effect on progesterone production. Thus, IGF may be an important regulator of ovarian follicular development in marsupials as has been shown in eutherian mammals.


Sign in / Sign up

Export Citation Format

Share Document