follicle selection
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 22)

H-INDEX

29
(FIVE YEARS 3)

2022 ◽  
Vol 12 ◽  
Author(s):  
Ying Huang ◽  
Wei Luo ◽  
Xuliang Luo ◽  
Xiaohui Wu ◽  
Jinqiu Li ◽  
...  

The differences in reproductive processes at the molecular level between viviparous and oviparous animals are evident, and the site in the ovary that synthesizes sex hormones (androgens and oestrogens) and the trends for enriching sex hormones during follicle development in chickens are different from those in mammals, suggesting that the effect of sex hormones on follicle development in chickens is probably different from that in viviparous animals. To explore the specific role of androgen receptors (ARs) on chicken follicular development, we matched the correspondence of follicular development stages among chickens, humans, cows and identified chicken-specific genes related to follicle development (GAL-SPGs) by comparing follicle development-related genes and their biological functions among species (chickens, humans, and cows). A comparison of the core transcription factor regulatory network of granulosa cells (or ovaries) based on super-enhancers among species (chicken, human, and mouse) revealed that AR is a core transcriptional regulator specific to chickens. In vivo experiments showed that inhibition of AR significantly reduced the number of syf (selected stage follicles) in chickens and decreased the expression of GAL-SPGs in F5 follicles, while in vitro experiments showed that inhibition of AR expression in chicken granulosa cells (GCs) significantly down-regulated the expression levels of GAL-SPGs, indicating that AR could regulate follicle selection through chicken-specific genes related to follicle development. A comparison among species (77 vertebrates) of the conserved genomic regions, where chicken super-enhancers are located, revealed that the chicken AR super-enhancer region is conserved in birds, suggesting that the role of AR in follicle selection maybe widespread in birds. In summary, we found that AR can regulate follicle selection through chicken-specific genes related to follicle development, which also emphasizes the important role of AR in follicle selection in chickens and provides a new perspective for understanding the unique process of follicle development in chickens. Our study will contribute to the application of androgens to the control of egg production in chickens and suggests that researchers can delve into the mechanisms of follicle development in birds based on androgen/androgen receptors.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2706
Author(s):  
Laurie Francoeur ◽  
Claire S. Stephens ◽  
Patricia A. Johnson

Intense selective breeding of chickens has resulted in suboptimal egg production in broiler breeder hens. This reproductive phenotype is exacerbated by ad libitum feeding, which leads to excessive and disorganized follicular growth. One strategy used to improve broiler breeder hens’ reproductive efficiency is restricted feeding. In this study, we sought to identify transcriptional changes, which translate the level of dietary intake into increased follicle selection. Broiler breeder hens (n = 16 per group) were raised according to commercial guidelines until 28 weeks of age and then randomly assigned to an ad libitum diet (FF) or continued on a restricted diet (RF) for 6 weeks. Following dietary treatment, FF hens (n = 2) with excessive follicle selection and RF hens (n = 3) with normal follicle selection were selected for RNA-sequencing. Transcriptomes of granulosa cells from 6–8-mm follicles were sequenced to identify transcriptional differences in the follicle population from which selection was made for the preovulatory stage. Differential expression analysis identified several genes known to play a role in follicle development (CYP11A1, STAR, INHA, and INHBB) that are upregulated in FF hens. These changes in gene expression suggest earlier granulosa cell differentiation and steroidogenic competency in the granulosa layer from FF hens.


2020 ◽  
Vol 103 (6) ◽  
pp. 1217-1228
Author(s):  
Victor E Gomez-León ◽  
João Paulo Andrade ◽  
Brian W Kirkpatrick ◽  
Sadrollah Molaei Moghbeli ◽  
Alvaro García-Guerra ◽  
...  

Abstract Studying selection of multiple dominant follicles (DFs) in monovulatory species can advance our understanding of mechanisms regulating selection of single or multiple DFs. Carriers of the bovine high fecundity Trio allele select multiple DFs, whereas half-sib noncarriers select a single DF. This study compared follicle selection during endogenous gonadotropin pulses versus during ablation of pulses with Acyline (GnRH antagonist) and luteinizing hormone (LH) action replaced with nonpulsatile human chorionic gonadotropin (hCG) treatment in Trio carriers (n = 28) versus noncarriers (n = 32). On Day 1.5 (Day 0 = ovulation), heifers were randomized: (1) Control, untreated; (2) Acyline, two i.m. doses (Days 1.5 and D3) of 3 μg/kg; (3) hCG, single i.m. dose of 50 IU hCG on Day 1.5 followed by daily doses of 100 IU; and (4) Acyline + hCG. Treatments with nonpulsatile hCG were designed to replace LH action in heifers treated with Acyline. Acyline treatment resulted in cessation of follicle growth on Day 3 with smaller (P < 0.0001) maximum follicle diameter in Trio carriers (6.6 ± 0.2 mm) than noncarriers (8.7 ± 0.4 mm). Replacement of LH action (hCG) reestablished follicle diameter deviation and maximum diameter of DFs in both genotypes (8.9 ± 0.3 mm and 13.1 ± 0.5 mm; P < 0.0001). Circulating follicle stimulating hormone (FSH) was greater in Acyline-treated than in controls. Finally, Acyline + hCG decreased (P < 0.0001) the number of DFs from 2.7 ± 0.2 to 1.3 ± 0.2 in Trio carriers, with most heifers having only one DF. This demonstrates the necessity for LH in acquisition of dominance in Trio carriers (~6.5 mm) and noncarriers (~8.5 mm) and provides evidence for a role of GnRH-induced FSH/LH pulses in selection of multiple DFs in Trio carriers and possibly other physiologic situations with increased ovulation rate.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1589
Author(s):  
Thobela Louis Tyasi ◽  
Xue Sun ◽  
Xuesong Shan ◽  
Simushi Liswaniso ◽  
Ignatius Musenge Chimbaka ◽  
...  

RAC1 belongs to the small G protein Rho subfamily and is implicated in regulating gene expression, cell proliferation and differentiation in mammals and humans; nevertheless, the function of RAC1 in growth and development of hen ovarian follicles is still unclear. This study sought to understand the biological effects of RAC1 on granulosa cell (GC) proliferation and differentiation of hen ovarian prehierarchical follicles. Firstly, our results showed expression levels of RAC1 mRNA in the follicles with diameters of 7.0–8.0 mm, 6.0–6.9 mm and 1.0–3.9 mm were greater than other follicles (p < 0.05). The RAC1 protein was mainly expressed in oocyte and its around GCs and stromal tissues of the prehierarchical follicles by immunohistochemistry. Further investigation revealed the RAC1 gene remarkably enhanced the mRNA and protein expression levels of FSHR (a marker of follicle selection), CCND2 (a marker of cell-cycle progression and GC differentiation), PCNA (a marker of GC proliferation), StAR and CYP11A1 (markers of GC differentiation and steroidogenesis) (p < 0.05). Furthermore, our data demonstrated siRNA interference of RAC1 significantly reduced GC proliferation (p < 0.05), while RAC1 gene overexpression enhanced GC proliferation in vitro (p < 0.05). Collectively, this study provided new evidence that the biological effects of RAC1 on GC proliferation, differentiation and steroidogenesis of chicken ovary follicles.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Qiuyue Chen ◽  
Yiya Wang ◽  
Zemin Liu ◽  
Xiaoli Guo ◽  
Yi Sun ◽  
...  

Reproduction ◽  
2020 ◽  
Vol 159 (5) ◽  
pp. 559-569 ◽  
Author(s):  
Victor E Gomez-León ◽  
O J Ginther ◽  
Rafael R Domingues ◽  
José D Guimarães ◽  
Milo C Wiltbank

Previous research demonstrated that acute treatment with GnRH antagonist, Acyline, allowed follicle growth until ~8.5 mm and no dominant follicle was selected. This study evaluated whether deficient LH was the underlying mechanism for Acyline effects by replacing LH action, using human chorionic gonadotropin (hCG), during Acyline treatment. Holstein heifers (n = 24) during first follicular wave were evaluated by ultrasound and randomized into one of three treatments: Control (saline treatments), Acyline (5 µg/kg Acyline), or Acyline+hCG (Acyline plus 50 IU of hCG at start then 100 IU every 12 h). Pulses of LH were present in Control heifers (9 Pulses/10 h) but not during Acyline treatment. Data were normalized to the transition to diameter deviation (day 0; F1 ~7.5 mm). Diameter deviation of the largest (F1) and the second largest (F2) follicle was not observed in Acyline-treated heifers, whereas control heifers had decreased growth of F2 at F1 ~7.5 mm, indicating deviation. Selection of a single dominant follicle was restored by providing LH activity in Acyline+hCG heifers, as evidenced by F1 and F2 deviation, continued growth of F1, and elevated circulating estradiol. Separation of F1 and F2 occurred 12 h (~7.0 mm) earlier in Acyline+hCG heifers than Controls. Circulating FSH was greater in Acyline than Controls, but lower in Acyline+hCG than Controls after day 1.5. In conclusion, dominant follicle selection and growth after follicle deviation is due to LH action as shown by inhibition of this process during ablation of GnRH-stimulated LH pulses with Acyline and restoration of it after replacement of LH action by hCG treatment.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Livio Casarini ◽  
Clara Lazzaretti ◽  
Elia Paradiso ◽  
Silvia Limoncella ◽  
Laura Riccetti ◽  
...  

Abstract Mechanisms regulating the selection of antral ovarian follicles are poorly understood and supposed to rely on low estrogen levels, decline of follicle-stimulating hormone (FSH) levels and receptor (FSHR) expression. These concepts are challenged in vitro, where apoptosis of human granulosa cells (hGLC) and transfected cell lines is induced by high doses of FSH or FSHR overexpression, while estrogens induce anti-apoptotic signals via nuclears and a G protein-coupled estrogen receptor (GPER). Therefore, in vitro data suggest that antral follicle selection may be driven by underestimated, FSH/FSHR-dependent apoptotic signals due to transiently maximized FSHR expression and overload of cAMP signalling, prevailing on estrogen-dependent signals. Here we demonstrate how FSHR/GPER physical interaction rescue ovarian follicles from FSH-mediated death. 10 nM FSH induces high intracellular levels of cAMP, measured by bioluminescence resonance energy transfer (BRET), and apoptosis in cultured hGLC under conditions where GPER levels are depleted by siRNA. This result was confirmed in transfected HEK293 cells overexpressing FSHR. Using BRET, photo-activated localization microscopy (PALM) and bioinformatics prodiction, we also demonstrate FSHR/GPER heteromers at the cell surface. The role of FSHR/GPER heteromers may be relevant to inhibit FSH-induced death signals, since increasing GPER expression levels in HEK293 cells co-expressing FSHR results in displacement of the Gαs-protein to FSHR, blockade of FSH-induced cAMP production and inhibition of apoptosis. However, in HEK293 cells coexpressing GPER/FSHR, FSH-induced activation of the anti-apoptotic AKT-pathway via a Gβγ-dependent mechanism, as demonstrated by Western blotting in cells treated using the inhibitor gallein. Inhibition of both FSH-induced cAMP production and apoptosis was lost when FSHR is coexpressed together with a mutant GPER, unable to heteromerize with FSHR, as well as in KO HEK293 cells unable to produce a molecular complex associated with GPER inhibiting cAMP. GPER/FSHR coexpression is confirmed in secondary follicles from paraffin-embedded tissues of human ovary by immunohistochemistry, suggesting that FSHR-GPER heterodimers could be physiologically relevant in vivo for inhibiting cAMP-linked apoptosis. Most importantly, FSHR and GPER co-expression correlates in hGLC from FSH-normo-responder women undergoing assisted reproduction, while it is not in hGLC from FSH-poor-responders, where increasing FSHR mRNA levels do not correspond to increasing GPER mRNA levels. We demonstrate that death signals in atretic follicles are delivered through overexpressed FSHR and inhibited by FSHR/GPER heteromerization, activating anti-apoptotic pathways. This finding unveils a novel working model of the physiology of dominant follicle selection and the relationship between FSH and estrogens.


2020 ◽  
Author(s):  
Qiuyue Chen ◽  
Yiya Wang ◽  
Zemin Liu ◽  
Xiaoli Guo ◽  
Yi Sun ◽  
...  

Abstract Background: Follicle selection in chickens refers to the process of selecting one follicle from a group of small yellow follicles (SY, 6-8 mm in diameter) for development into 12-15 mm hierarchical follicles (usually F6 follicles), which is an important process affecting laying performance in the poultry industry. Although transcriptomic analysis of chicken ovarian follicles has been reported, integrated analysis of chicken follicles for selection by using both transcriptomic and proteomic approaches is still rarely performed. In this study, we compared the proteomes and transcriptomes of SY and F6 follicles in laying hens and identified several genes involved in chicken follicle selection. Results: Transcriptomic analysis revealed 855 differentially expressed genes (DEGs) between SY follicles and F6 follicles in laying hens, among which 202 were upregulated and 653 were downregulated. Proteomic analysis revealed 259 differentially expressed proteins (DEPs), including 175 upregulated and 84 downregulated proteins. Among the identified DEGs and DEPs, changes in the expression of seven genes, including VLDLR1, WIF1, NGFR, AMH, BMP15, GDF6 and MMP13 , and nine proteins, including VLDLR, VTG1, VTG3, PSCA, APOB, APOV1, F10, ZP2 and ZP3L2, were validated. Further analysis indicated that the mRNA level of chicken VLDLR was higher in F6 follicles than in SY follicles and was also higher in granulosa cells (GCs) than in thecal cells (TCs), and it was stimulated by FSH in GCs of prehierarchical follicles. Conclusions: By comparing the proteomes and transcriptomes of SY and F6 follicles in laying hens, we identified several differentially expressed proteins/genes that might play certain roles in chicken follicle selection. These data may contribute to the identification of functional genes and proteins involved in chicken follicle selection.


Sign in / Sign up

Export Citation Format

Share Document