scholarly journals Cilium Expression Score Predicts Glioma Survival

2021 ◽  
Vol 12 ◽  
Author(s):  
Srinivas Rajagopalan ◽  
Amartya Singh ◽  
Hossein Khiabanian

The accurate classification, prognostication, and treatment of gliomas has been hindered by an existing cellular, genomic, and transcriptomic heterogeneity within individual tumors and their microenvironments. Traditional clustering is limited in its ability to distinguish heterogeneity in gliomas because the clusters are required to be exclusive and exhaustive. In contrast, biclustering can identify groups of co-regulated genes with respect to a subset of samples and vice versa. In this study, we analyzed 1,798 normal and tumor brain samples using an unsupervised biclustering approach. We identified co-regulated gene expression profiles that were linked to proximally located brain regions and detected upregulated genes in subsets of gliomas, associated with their histologic grade and clinical outcome. In particular, we present a cilium-associated signature that when upregulated in tumors is predictive of poor survival. We also introduce a risk score based on expression of 12 cilium-associated genes which is reproducibly informative of survival independent of other prognostic biomarkers. These results highlight the role of cilia in development and progression of gliomas and suggest potential therapeutic vulnerabilities for these highly aggressive tumors.

Author(s):  
Gustavo Deco ◽  
Kevin Aquino ◽  
Aurina Arnatkevičiūtė ◽  
Stuart Oldham ◽  
Kristina Sabaroedin ◽  
...  

AbstractBrain regions vary in their molecular and cellular composition, but how this heterogeneity shapes neuronal dynamics is unclear. Here, we investigate the dynamical consequences of regional heterogeneity using a biophysical model of whole-brain functional magnetic resonance imaging (MRI) dynamics in humans. We show that models in which transcriptional variations in excitatory and inhibitory receptor (E:I) gene expression constrain regional heterogeneity more accurately reproduce the spatiotemporal structure of empirical functional connectivity estimates than do models constrained by global gene expression profiles and MRI-derived estimates of myeloarchitecture. We further show that regional heterogeneity is essential for yielding both ignition-like dynamics, which are thought to support conscious processing, and a wide variance of regional activity timescales, which supports a broad dynamical range. We thus identify a key role for E:I heterogeneity in generating complex neuronal dynamics and demonstrate the viability of using transcriptional data to constrain models of large-scale brain function.


2019 ◽  
Vol 20 (12) ◽  
pp. 3073 ◽  
Author(s):  
Ana Dienstbier ◽  
Fabian Amman ◽  
Daniel Štipl ◽  
Denisa Petráčková ◽  
Branislav Večerek

Bordetella pertussis is a Gram-negative strictly human pathogen of the respiratory tract and the etiological agent of whooping cough (pertussis). Previously, we have shown that RNA chaperone Hfq is required for virulence of B. pertussis. Furthermore, microarray analysis revealed that a large number of genes are affected by the lack of Hfq. This study represents the first attempt to characterize the Hfq regulon in bacterial pathogen using an integrative omics approach. Gene expression profiles were analyzed by RNA-seq and protein amounts in cell-associated and cell-free fractions were determined by LC-MS/MS technique. Comparative analysis of transcriptomic and proteomic data revealed solid correlation (r2 = 0.4) considering the role of Hfq in post-transcriptional control of gene expression. Importantly, our study confirms and further enlightens the role of Hfq in pathogenicity of B. pertussis as it shows that Δhfq strain displays strongly impaired secretion of substrates of Type III secretion system (T3SS) and substantially reduced resistance to serum killing. On the other hand, significantly increased production of proteins implicated in transport of important metabolites and essential nutrients observed in the mutant seems to compensate for the physiological defect introduced by the deletion of the hfq gene.


2017 ◽  
Vol 5 (0) ◽  
pp. 21-35 ◽  
Author(s):  
Shiori Miura ◽  
Takehiro Himaki ◽  
Junko Takahashi ◽  
Hitoshi Iwahashi

Gene ◽  
2016 ◽  
Vol 576 (2) ◽  
pp. 782-790 ◽  
Author(s):  
Gaiping Wang ◽  
Shasha Chen ◽  
Congcong Zhao ◽  
Xiaofang Li ◽  
Ling Zhang ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3471-3471
Author(s):  
Brian Balgobind ◽  
C. Michel Zwaan ◽  
Susan T.C.J.M. Arentsen-Peters ◽  
Dirk Reinhardt ◽  
Ursula Creutzig ◽  
...  

Abstract Abstract 3471 Poster Board III-359 One important cytogenetic subgroup of pediatric acute myeloid leukemia (AML) is characterized by translocations of chromosome 11q23, which accounts for 15 to 20% of all cases with an evaluable chromosome analysis. In most of these cases, the mixed lineage leukemia (MLL) gene is involved. More than 50 fusion translocation partners of the MLL gene have been identified and outcome differs by translocation partner, suggesting differences in the biological background. So far these biological differences have not been unravelled. Therefore, we investigated the gene expression profiles of MLL-rearranged subgroups in pediatric AML in order to discover and identify the role of differentially expressed genes. Affymetrix Human Genome U133 plus 2.0 microarrays were used to generate gene expression profiles of 257 pediatric AML cases, which included 21 pediatric AML cases with t(9;11)(p22;q23) and 33 with other MLL-rearrangements. With these profiles, we were able to identify a specific gene expression signature for t(9;11)(p22;q23) using an empirical Bayes linear regression model (Bioconductor package: Limma). This signature was mainly determined by overexpression of the BRE (brain and reproductive organ-expressed) gene. The mean average VSN normalized expression for BRE in the t(9;11)(p22;q23) subgroup was 3.7-fold higher compared with that in other MLL-rearranged cases (p<0.001). Validation by RQ-PCR confirmed this higher expression in t(9;11)(p22;q23) cases (p<0.001). In addition, we confirmed that overexpression of BRE was predominantly found in t(9;11)(p22;q23) in an independent gene expression profile cohort (Ross et al, Blood 2002). Remarkably, MLL-rearranged cases with a BRE expression higher than the mean expression showed a significant better 3 year disease free survival than MLL-rearranged cases with a lower expression (80±13% vs. 30±10%, p=0.02). Previously, overexpression of BRE has been described in hepatocellular carcinomas (HCC) (Chang et al., Oncogene 2008) and an anti-apoptotic effect was described. We transfected BRE in the monomac-1 cell line, which harbors a t(9;11)(p22;q23). We did not find a proliferative advantage for BRE overexpression using a BrDU-assay nor changes in drug sensitivity, indicating that the anti-apoptotic effect as described for HCC in vivo could not be confirmed in vitro in AML. In conclusion, overexpression of the BRE gene is predominantly involved in pediatric MLL-rearranged AML with t(9;11)(p22;q23). Moreover, high expression of BRE showed a favorable prognosis. We did not find any influence of BRE expression on cell proliferation or apoptosis in vitro. This indicates that further studies involving the role of the MLL-fusion protein on BRE transcription are necessary to unravel the leukemogenic role in pediatric AML. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document