scholarly journals Immune Response of Indian Preterm Infants to Pentavalent Vaccine Varies With Component Antigens and Gestational Age

2021 ◽  
Vol 12 ◽  
Author(s):  
Archana Kulkarni-Munje ◽  
Nandini Malshe ◽  
Sonali Palkar ◽  
Aniket Amlekar ◽  
Sanjay Lalwani ◽  
...  

Childhood vaccination plays critical role in protecting infants from several dreaded diseases. Of the global 15 million preterm (PT) infants with compromised immune system born annually, India contributes to >3.5 million. Generation of adequate vaccine-induced immune response needs to be ensured of their protection. Immune response of Indian PT (n = 113) and full-term (FT, n = 80) infants to pentavalent vaccine administered as per the national recommendation was studied. Antibody titers against component antigens of pentavalent vaccine, immune cells profiling (T and B cells, monocytes and dendritic cells) and plasma cytokines were determined pre- and post-vaccination. Additionally, cell-mediated recall immune responses to pentavalent antigens were evaluated after short time antigenic exposure to infant PBMCs. Irrespective of gestational age (GA), all the infants developed adequate antibody response against tetanus, diphtheria, and protective but lower antibody levels for Haemophilus influenzae type-b and hepatitis B in preterm infants. Lower (~74%) protective antibody response to pertussis was independent of gestational age. PT-infants exhibited lower frequencies of CD4 T cells/dendritic cells/monocytes, increased plasma IL-10 levels and lower proliferation of central and effector memory T cells than in term-infants. Proliferative central memory response of FT-infants without anti-pertussis antibodies suggests protection from subsequent infection. Responder/non-responder PT-infants lacked immunological memory and could be infected with Bordetella. For hepatitis B, the recall response was gestational age-dependent and antibody status-independent. Humoral/cellular immune responses of PT-infants were dependent on the type of the immunogen. Preterm infants born before 32 weeks of gestation may need an extra dose of pentavalent vaccine for long lived robust immune response.

2020 ◽  
Author(s):  
Xiaoyi Li ◽  
Qifan Zhang ◽  
Wanyue Zhang ◽  
Guofu Ye ◽  
Yanchen Ma ◽  
...  

Abstract Background: The restoration of host hepatitis B virus (HBV)-specific antiviral immunity is an effective strategy for hepatitis B recovery. Follicular dendritic cells (FDCs) play a crucial role in immune regulation. The goal of the present study was to investigate the characteristics and functions of FDCs in chronic HBV infection. Methods: The frequencies of FDCs in peripheral blood, liver, and spleen were measured in patients with chronic HBV infection. Isolated FDCs from splenic tissues of HBV-related liver cirrhosis-induced hypersplenism patients were cultured with autologous intrasplenic CD4 + T cells and CD19 + B cells.Results: We found that patients with chronic HBV infection had a significantly increased frequency of circulating FDCs compared with that of healthy controls. Additionally, the frequency of circulating FDCs was positively correlated with that of intrahepatic and intrasplenic counterparts. Moreover, a positive correlation between the frequency of circulating FDCs and plasmablast and memory B cells, as well as C-X-C motif chemokine receptor type 5 (CXCR5) + CD4 + T cells and CXCR5 + CD8 + T cells was also observed. Notably, in vitro experiments demonstrated that FDCs derived from splenic tissues of chronic HBV patients facilitated interferon-γ and interleukin-21 production from autologous intrasplenic CD4 + T cells and promoted the proliferation of autologous intrasplenic CD19 + B cells. Conclusions: Expanded FDCs in patients with chronic HBV infection may favor the host immune responses against HBV. The identification of this unique population may contribute to a better understanding of the immune regulatory mechanisms and provide a potential immunotherapeutic target in chronic HBV infection.


Nanomedicine ◽  
2020 ◽  
Vol 15 (17) ◽  
pp. 1641-1652
Author(s):  
Wen Liu ◽  
Yuki Takahashi ◽  
Masaki Morishita ◽  
Makiya Nishikawa ◽  
Yoshinobu Takakura

Aim: Tumor-derived small extracellular vesicles (TEVs) are considered for use in inducing tumor antigen-specific immune responses as they contain tumor antigens. The delivery of tumor antigens to the antigen presentation cells (especially dendritic cells [DCs]), and the activation of DCs are the main challenges of TEV therapy. Materials & methods: TEVs were modified with CD40 ligand (CD40L), which can target CD40 expressed on the surface of DCs and can activate them via CD40L-CD40 interactions. Results: It was found that CD40L-TEVs were efficiently taken up by DCs and also activated them. Moreover, tumor antigens were efficiently presented to the T cells by DCs treated with CD40L-TEVs. Conclusion: This study proved that CD40L-modification of TEVs will be helpful for further development of TEV-based tumor vaccination.


2002 ◽  
Vol 49 (2) ◽  
pp. 295-302 ◽  
Author(s):  
Dariusz W Kowalczyk

This article reviews the evidence for the danger model in the context of immune response to tumors and the insufficiency of the immune system to eliminate tumor growth. Despite their potential immunogenicity tumors do not induce significant immune responses which could destroy malignant cells. According to the danger model, the immune surveillance system fails to detect tumor antigens because transformed cells do not send any danger signals which could activate dendritic cells and initiate an immune response. Instead, tumor cells or antigen presenting cells turn off the responding T cells and induce tolerance. The studies reviewed herein based on model tumor antigens, recombinant viral vectors and detection of tumor specific T cells by MHC/peptide tetramers underscore the critical role of tumor antigen presentation and the context in which it occurs. They indicate that antigen presentation only by activated but not by cancer or resting dendritic cells is necessary for the induction of immune responses to tumor antigens. It becomes apparent that the inability of dendritic cells to become activated provides a biological niche for tumor escape from immune destruction and seems to be a principal mechanism for the failure of tumor immune surveillance.


Blood ◽  
2006 ◽  
Vol 107 (3) ◽  
pp. 1003-1009 ◽  
Author(s):  
Susanne Hofer ◽  
Karina Pfeil ◽  
Harald Niederegger ◽  
Susanne Ebner ◽  
Van Anh Nguyen ◽  
...  

AbstractWhen T cells are primed by dendritic cells (DCs) to initiate antigen-specific immune responses screening for matching antigen receptor-MHC/peptide pairs takes place in DC-T-cell conjugates. For an immune response DC-T-cell conjugates formed during priming events need to dissolve. Although detailed knowledge on molecules involved in the conjugate formation is available, dissolving of them has not been considered to be an active process. Here, we identify CYTIP (cytohesin-interacting protein) to mediate DC-T-cell deattachment. CYTIP, which is induced during maturation of DCs, shortly accumulates to the contact zones with T cells within the first hour of coculture. Specific silencing of CYTIP results in stronger adhesion of DCs to T cells and to fibronectin. When a need for deattachment is created in a T-cell priming assay by only partially loading DCs with antigen, CYTIP silencing causes reduced priming capacity. Thus, CYTIP allows DCs to actively control DC-T-cell interactions.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Xiaoyi Li ◽  
Qifan Zhang ◽  
Wanyue Zhang ◽  
Guofu Ye ◽  
Yanchen Ma ◽  
...  

Abstract Background The restoration of host hepatitis B virus (HBV)-specific antiviral immunity is an effective strategy for hepatitis B recovery. Follicular dendritic cells (FDCs) play a crucial role in immune regulation. The goal of the present study was to investigate the characteristics and functions of FDCs in chronic HBV infection. Methods The frequencies of FDCs in peripheral blood, liver, and spleen were measured in patients with chronic HBV infection. Isolated FDCs from splenic tissues of HBV-related liver cirrhosis-induced hypersplenism patients were cultured with autologous intrasplenic CD4+ T cells and CD19+ B cells. Results We observed that patients with chronic HBV infection had a significantly increased frequency of circulating FDCs compared to that of healthy controls. Additionally, the frequency of circulating FDCs was positively correlated with that of intrahepatic and intrasplenic counterparts. Moreover, positive correlations were observed between the frequencies of circulating FDCs and plasmablast and memory B cells, as well as C-X-C motif chemokine receptor type 5 (CXCR5)+CD4+ T cells and CXCR5+CD8+ T cells. Notably, in vitro experimental results demonstrated that FDCs derived from splenic tissues of chronic HBV patients facilitated interferon-γ and interleukin-21 production from autologous intrasplenic CD4+ T cells and promoted the proliferation of autologous intrasplenic CD19+ B cells. Conclusions Expanded FDCs in patients with chronic HBV infection may favor host immune responses against HBV. The identification of this unique population of cell may contribute to a better understanding of the immune regulatory mechanisms associated with chronic HBV infection and provide a potential immunotherapeutic target for this disease.


2020 ◽  
Author(s):  
Xiaoyi Li ◽  
Qifan Zhang ◽  
Wanyue Zhang ◽  
Guofu Ye ◽  
Yanchen Ma ◽  
...  

Abstract Background: Restoration of host hepatitis B virus (HBV)-specific antiviral immunity is an effective strategy for hepatitis B recovery. Follicular dendritic cells (FDCs) play a crucial role in immune regulation. This study aims to investigate the characteristics and functions of FDCs in chronic HBV infection. Methods: The frequencies of FDCs in peripheral blood, liver, and spleen were measured in patients with chronic HBV infection. Isolated FDCs from splenic tissues of HBV-related liver cirrhosis-induced hypersplenism patients were cultured with autologous intrasplenic CD4+ T cells and CD19+ B cells. Results: We found that patients with chronic HBV infection had a significantly increased frequency of circulating FDCs compared with that of healthy controls. Additionally, the frequency of circulating FDCs was positively correlated with that of intrahepatic and intrasplenic counterparts. Moreover, a positive correlation between the frequency of circulating FDCs and plasmablast and memory B cells, as well as C-X-C motif chemokine receptor type 5 (CXCR5)+CD4+ T cells and CXCR5+CD8+ T cells was also observed. Notably, in vitro experiments demonstrated that FDCs derived from splenic tissues of chronic HBV patients facilitated interferon-γ and interleukin-21 production from autologous intrasplenic CD4+ T cells and promoted the proliferation of autologous intrasplenic CD19+ B cells.Conclusions: Expanded FDCs in patients with chronic HBV infection may favor the host immune responses against HBV. The identification of this unique population may contribute to a better understanding of the immune regulatory mechanisms and provide a potential immunotherapeutic target in chronic HBV infection.


2020 ◽  
Author(s):  
Xiaoyi Li ◽  
Qifan Zhang ◽  
Wanyue Zhang ◽  
Guofu Ye ◽  
Yanchen Ma ◽  
...  

Abstract Background: The restoration of host hepatitis B virus (HBV)-specific antiviral immunity is an effective strategy for hepatitis B recovery. Follicular dendritic cells (FDCs) play a crucial role in immune regulation. The goal of the present study was to investigate the characteristics and functions of FDCs in chronic HBV infection. Methods: The frequencies of FDCs in peripheral blood, liver, and spleen were measured in patients with chronic HBV infection. Isolated FDCs from splenic tissues of HBV-related liver cirrhosis-induced hypersplenism patients were cultured with autologous intrasplenic CD4+ T cells and CD19+ B cells. Results: We observed that patients with chronic HBV infection had a significantly increased frequency of circulating FDCs compared to that of healthy controls. Additionally, the frequency of circulating FDCs was positively correlated with that of intrahepatic and intrasplenic counterparts. Moreover, positive correlations were observed between the frequencies of circulating FDCs and plasmablast and memory B cells, as well as C-X-C motif chemokine receptor type 5 (CXCR5)+CD4+ T cells and CXCR5+CD8+ T cells. Notably, in vitro experimental results demonstrated that FDCs derived from splenic tissues of chronic HBV patients facilitated interferon-γ and interleukin-21 production from autologous intrasplenic CD4+ T cells and promoted the proliferation of autologous intrasplenic CD19+ B cells.Conclusions: Expanded FDCs in patients with chronic HBV infection may favor host immune responses against HBV. The identification of this unique population of cell may contribute to a better understanding of the immune regulatory mechanisms associated with chronic HBV infection and provide a potential immunotherapeutic target for this disease.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4685-4685
Author(s):  
Lotta Hansson ◽  
Marzia Palma ◽  
Lars Adamson ◽  
Harriet Ryblom ◽  
Barbro Näsman-Glaser ◽  
...  

Abstract Background and aim. We have previously demonstrated that immunization with ex-vivo generated autologous dendritic cells loaded with apoptotic tumor cells (Apo-DC) induces specific immune responses in CLL patients especially when combined with GM-CSF and low-dose cyclophosphamide (CTX) (Palma et al, CII 2012). In this study we evaluate the safety and immunogenicity of Apo-DC vaccination in combination with low-dose lenalidomide alone, or in combination with GM-CSF and low-dose CTX in CLL patients. In patients with multiple myeloma, lenalidomide boosted the response to a pneumococcal vaccine (Noonan et al, Clin Ca Res 2012); lenalidomide may thus be a useful adjuvant also with tumor vaccines but has not yet been explored in man. In patients with CLL, lenalidomide has immunomodulatory properties including NK and T cell stimulation, as well as enhanced immunoglobulin production. Lenalidomide also induced a clinical "flare" reaction, upregulated adhesion molecules and facilitated synapse formation between CLL and T cells (Ramsay et al, J Clin Invest 2008; Shanafelt et al, Blood 2013)i.e. effects of advantage in tumor vaccination. We here report on the first results using lenalidomide as an adjuvant in tumor vaccination in man. Methods. Ten patients with slowly progressive but asymptomatic CLL were included. The first five patients were immunized intradermally five times during fourteen weeks with a mean of 16x106 Apo-DCs. Low-dose lenalidomide was given daily as an adjuvant at a dose of 2.5 mg from start of vaccination, for four weeks, and then escalated to 5 mg daily until week 24 (cohort I). The next five patients were treated in the same way but also received 300 mg/m2 CTX at day -3 and GM-CSF sc day 1-4 (cohort II). Clinical and immune effects of the vaccination were evaluated at regular time intervals for 1 year. A vaccine-induced immune response was defined as a ≥ 2-fold increase compared to pre-immunization values in either 3H-thymidine incorporation (proliferation) assay or ELISpot assay as described (Palma et al, CII 2012). Changes in the numbers of lymphocyte subpopulations including regulatory T cells (Tregs) as well as in T-cells expressing activation (CD69, CD137) and regulatory markers (CD103) were also evaluated. Results. To date, the 8 first included patients have completed treatment as planned and passed study week 52. The remaining 2 patients are between study week 24 and 52. No adverse events (AE) > grade 2 have been observed with the exception of one patient who had grade 3 hemolysis (AIHA) at study week 6 (cohort I) and one patient who had grade 4 thrombocytopenia at study week 5 (cohort II). AIHA was treated with steroids and lenalidomide was temporarily withdrawn for 4 weeks. The grade 4 thrombocytopenia required a 10 weeks withdraw of lenalidomide, upon which the thrombocytopenia resolved to grade 1. A decrease in the lymphocyte count fulfilling the criteria for partial response (clinical PR) was seen in 5 patients during lenalidomide treatment (one in cohort I and four in cohort II), but the lymphocyte count increased again to pre-vaccination levels at withdrawal of lenalidomide at week 24. Vaccine-induced immune responses were noted in 4/5 patients in cohort I and in 2/5 patients in cohort II. An inverse correlation between Tregs numbers and proliferation assay values was observed (r = -0.46, p=0.0015) i.e. high proliferative response was associated with low Tregs count. Changes in T cells expressing activation markers (CD69 and CD137) as well as the regulatory marker CD103 were also observed. Summary/conclusions. This is the first study on lenalidomide as an immunomodulatory agent in tumor vaccination. The results indicate that immunization of CLL patients with autologous tumor-loaded DCs combined with low-dose lenalidomide induced specific immune responses in CLL patients. Lenalidomide as a low-dose immune adjuvance had acceptable tolerability. This therapeutic approach should be explored further to define an optimal combination of vaccination schedule, lenalidomide dose and combination with other immunomodulatory agents interfering with the tumor-microenvironment with the aim to induce a potent immune response with a clinical impact. Disclosures Off Label Use: Lenalidomide is used as an adjuvant in this CLL vaccination study. Österborg:Celgene: DMC memeber of Celgene-initiated phase 3 trials Other.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Fela Mendlovic ◽  
Ana Flisser

The mucosal environment in mammals is highly tolerogenic; however, after exposure to pathogens or danger signals, it is able to shift towards an inflammatory response. Dendritic cells (DCs) orchestrate immune responses and are highly responsible, through the secretion of cytokines and expression of surface markers, for the outcome of such immune response. In particular, the DC subsets found in the intestine have specialized functions and interact with different immune as well as nonimmune cells. Intestinal helminths primarily induce Th2 responses where DCs have an important yet not completely understood role. In addition, this cross-talk results in the induction of regulatory T cells (T regs) as a result of the homeostatic mucosal environment. This review highlights the importance of studying the particular relation “helminth-DC-milieu” in view of the significance that each of these factors plays. Elucidating the mechanisms that trigger Th2 responses may provide the understanding of how we might modulate inflammatory processes.


2017 ◽  
Vol 41 (2) ◽  
pp. 423-438 ◽  
Author(s):  
Quanhui Tan ◽  
Siyuan Ma ◽  
Jianjun Hu ◽  
Xiaohua Chen ◽  
Yongsheng Yu ◽  
...  

Background: Chronic hepatitis B virus (HBV) infection is associated with a weak but specific cellular immune response of the host to HBV. Tripeptidyl peptidaseⅡ (TPPⅡ), an intracellular macromolecule and proteolytic enzyme, plays an important complementary and compensatory role for the proteasome during viral protein degradation and major histocompatibility complex class I antigen presentation by inducing a specific cellular immune response in vivo. Based on a previous study, we aimed to explore the role of MHC class I antigen presentation in vivo and the mechanisms that may be involved. Methods: In this study, recombinant adenoviral vectors harboring the hepatitis B core antigen (HBcAg) and the TPPII gene were constructed (Adv-HBcAg and Adv-HBcAg-TPPII), and H-2Kd HBV-transgenic BALB/c mice and HLA-A2 C57BL/6 mice were immunized with these vectors, respectively. We evaluated the specific immune responses induced by Adv-HBcAg-TPPII in the HBV transgenic BALB/c mice and HLA-A2 C57BL/6 mice as well as the anti-viral ability of HBV transgenic mice, and we explored the underlying mechanisms. Results: We found that immunization with Adv-HBcAg-TPPII induced the secretion of the cytokines interleukin-2 (IL-2), interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) as well as the activities of IFN-γ-secreting CD8+ T cells and CD4+ T cells. In addition, HBcAg-specific CTL activity in C57/BL mice and HBV transgenic animals was significantly enhanced in the Adv-HBcAg-TPPII group. Furthermore, Adv-HBcAg-TPPII decreased the hepatitis B surface antigen (HBsAg) and HBV DNA levels and the amount of HBsAg and HBcAg in liver tissues. Moreover, Adv-HBcAg-TPPII enhanced the expression of T-box transcription factor (T-bet) and downregulated GATA-binding protein 3 (GATA-3) while increasing the expression levels of JAK2, STAT1, STAT4 and Tyk2. Conclusions: These results suggested that the JAK/STAT signaling pathway participates in the CTL response that is mediated by the adenoviral vector encoding TPPII. Adv-HBcAg-TPPII could therefore break immune tolerance and stimulate HBV-specific cytotoxic T lymphocyte activity and could have a good therapeutic effect in transgenic mice.


Sign in / Sign up

Export Citation Format

Share Document