scholarly journals OX40L/OX40 Signal Promotes IL-9 Production by Mucosal MAIT Cells During Helicobacter pylori Infection

2021 ◽  
Vol 12 ◽  
Author(s):  
Siqi Ming ◽  
Mei Zhang ◽  
Zibin Liang ◽  
Chunna Li ◽  
Jianzhong He ◽  
...  

Mucosal associated invariant T (MAIT) cells play a critical role in Helicobacter pylori (H. pylori)-induced gastritis by promoting mucosal inflammation and aggravating mucosal injuries (1, 2). However, the underlying mechanism and key molecules involved are still uncertain. Here we identified OX40, a co-stimulatory molecule mainly expressed on T cells, as a critical regulator to promote proliferation and IL-9 production by MAIT cells and facilitate mucosal inflammation in H. pylori-positive gastritis patients. Serum examination revealed an increased level of IL-9 in gastritis patients. Meanwhile, OX40 expression was increased in mucosal MAIT cells, and its ligand OX40L was also up-regulated in mucosal dendritic cells (DCs) of gastritis patients, compared with healthy controls. Further results demonstrated that activation of the OX40/OX40L pathway promoted IL-9 production by MAIT cells, and MAIT cells displayed a highly-activated phenotype after the cross-linking of OX40 and OX40L. Moreover, the level of IL-9 produced by MAIT cells was positively correlated with inflammatory indexes in the gastric mucosa, suggesting the potential role of IL-9-producing MAIT cells in mucosal inflammation. Taken together, we elucidated that OX40/OX40L axis promoted mucosal MAIT cell proliferation and IL-9 production in H. pylori-induced gastritis, which may provide potential targeting strategies for gastritis treatment.

2016 ◽  
Vol 8 (3) ◽  
Author(s):  
Concetta De Luca ◽  
Annalisa Mancin ◽  
Maria Calabrò ◽  
Cristina Daleno ◽  
Antonella Ferrario ◽  
...  

We report a case of <em>Helicobacter pylori</em> transient bacteremia in a woman with ulcerated antral gastric cancer. The patient was hospitalized for laparoscopy and subtotal gastrectomy. After surgery she developed fever (39°C) and was empirically treated with levofloxacin. Blood cultures, collected and sent immediately to Laboratory, were positive for a spiral Gramnegative bacterium. This isolate was identified as <em>H. pylori</em> and the specific susceptibility test was performed. One day after the fever was decreased but antibiotic treatment with levofloxacin was continued and it was maintained until discharge. In summary, <em>H. pylori</em> transient bacteremia may occur as a rare complication after stomach surgery. Further studies are necessary to elucidate the potential role of <em>H</em>. <em>pylori</em> presence in blood.


2005 ◽  
Vol 73 (3) ◽  
pp. 1820-1827 ◽  
Author(s):  
David J. McGee ◽  
Melanie L. Langford ◽  
Emily L. Watson ◽  
J. Elliot Carter ◽  
Yu-Ting Chen ◽  
...  

ABSTRACT Helicobacter pylori causes disease in the human stomach and in mouse and gerbil stomach models. Previous results have shown that motility is critical for H. pylori to colonize mice, gerbils, and other animal models. The role of chemotaxis, however, in colonization and disease is less well understood. Two genes in the H. pylori chemotaxis pathway, cheY and tlpB, which encode the chemotaxis response regulator and a methyl-accepting chemoreceptor, respectively, were disrupted. The cheY mutation was complemented with a wild-type copy of cheY inserted into the chromosomal rdxA gene. The cheY mutant lost chemotaxis but retained motility, while all other strains were motile and chemotactic in vitro. These strains were inoculated into gerbils either alone or in combination with the wild-type strain, and colonization and inflammation were assessed. While the cheY mutant completely failed to colonize gerbil stomachs, the tlpB mutant colonized at levels similar to those of the wild type. With the tlpB mutant, there was a substantial decrease in inflammation in the gerbil stomach compared to that with the wild type. Furthermore, there were differences in the numbers of each immune cell in the tlpB-mutant-infected stomach: the ratio of lymphocytes to neutrophils was about 8 to 1 in the wild type but only about 1 to 1 in the mutant. These results suggest that the TlpB chemoreceptor plays an important role in the inflammatory response while the CheY chemotaxis regulator plays a critical role in initial colonization. Chemotaxis mutants may provide new insights into the steps involved in H. pylori pathogenesis.


2005 ◽  
Vol 187 (15) ◽  
pp. 5156-5165 ◽  
Author(s):  
Koji Hiratsuka ◽  
Susan M. Logan ◽  
J. Wayne Conlan ◽  
Vandana Chandan ◽  
Annie Aubry ◽  
...  

ABSTRACT We have identified a Helicobacter pylori d-glycero-d-manno-heptosyltransferase gene, HP0479, which is involved in the biosynthesis of the outer core region of H. pylori lipopolysaccharide (LPS). Insertional inactivation of HP0479 resulted in formation of a truncated LPS molecule lacking an α-1,6-glucan-, dd-heptose-containing outer core region and O-chain polysaccharide. Detailed structural analysis of purified LPS from HP0479 mutants of strains SS1, 26695, O:3, and PJ1 by a combination of chemical and mass spectrometric methods showed that HP0479 likely encodes α-1,2-d-glycero-d-manno-heptosyltransferase, which adds a d-glycero-d-manno-heptose residue (DDHepII) to a distal dd-heptose of the core oligosaccharide backbone of H. pylori LPS. When the wild-type HP0479 gene was reintegrated into the chromosome of strain 26695 by using an “antibiotic cassette swapping” method, the complete LPS structure was restored. Introduction of the HP0479 mutation into the H. pylori mouse-colonizing Sydney (SS1) strain and the clinical isolate PJ1, which expresses dd-heptoglycan, resulted in the loss of colonization in a mouse model. This indicates that H. pylori expressing a deeply truncated LPS is unable to successfully colonize the murine stomach and provides evidence for a critical role of the outer core region of H. pylori LPS in colonization.


1999 ◽  
Vol 122 (1) ◽  
pp. 91-95 ◽  
Author(s):  
H. BRENNER ◽  
D. ROTHENBACHER ◽  
G. BODE ◽  
P. DIEUDONNÉ ◽  
G. ADLER

The mode of spread of Helicobacter pylori infection is subject to ongoing debate. Recent studies among patients with gastrointestinal disorders suggest a potential role of conjugal transmission. In this study, the clustering of H. pylori infection was assessed among 110 employees of a health insurance company and their partners. Active infection with H. pylori was measured by the 13C-urea breath test. Information on potential confounders was collected by a standardized questionnaire. Overall, 16 employees (14·5%) and 24 partners (21·8%) were infected. While only 7% (6/86) of employees with an uninfected partner were infected, this applied to 42% (10/24) of employees with an infected partner. A very strong relation between partners' infection status persisted after control for age and other potential confounders (adjusted odds ratio, 7·0; 95% confidence interval, 1·8–26·7). Furthermore, the risk of infection increased with the number of years lived with an infected partner. These results support the hypothesis of a major role of spouse-to-spouse transmission of H. pylori infection.


2006 ◽  
Vol 74 (3) ◽  
pp. 1786-1794 ◽  
Author(s):  
Christophe Genisset ◽  
Cesira L. Galeotti ◽  
Pietro Lupetti ◽  
David Mercati ◽  
David A. G. Skibinski ◽  
...  

ABSTRACT Most Helicobacter pylori strains secrete a toxin (VacA) that causes massive vacuolization of target cells and which is a major virulence factor of H. pylori. The VacA amino-terminal region is required for the induction of vacuolization. The aim of the present study was a deeper understanding of the critical role of the N-terminal regions that are protected from proteolysis when VacA interacts with artificial membranes. Using a counterselection system, we constructed an H. pylori strain, SPM 326-Δ49-57, that produces a mutant toxin with a deletion of eight amino acids in one of these protected regions. VacA Δ49-57 was correctly secreted by H. pylori but failed to oligomerize and did not have any detectable vacuolating cytotoxic activity. However, the mutant toxin was internalized normally and stained the perinuclear region of HeLa cells. Moreover, the mutant toxin exhibited a dominant negative effect, completely inhibiting the vacuolating activity of wild-type VacA. This loss of activity was correlated with the disappearance of oligomers in electron microscopy. These findings indicate that the deletion in VacA Δ49-57 disrupts the intermolecular interactions required for the oligomerization of the toxin.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 331
Author(s):  
Montserrat Palau ◽  
Núria Piqué ◽  
M. José Ramírez-Lázaro ◽  
Sergio Lario ◽  
Xavier Calvet ◽  
...  

Helicobacter pylori is a common pathogen associated with several severe digestive diseases. Although multiple virulence factors have been described, it is still unclear the role of virulence factors on H. pylori pathogenesis and disease progression. Whole genome sequencing could help to find genetic markers of virulence strains. In this work, we analyzed three complete genomes from isolates obtained at the same point in time from a stomach of a patient with adenocarcinoma, using multiple available bioinformatics tools. The genome analysis of the strains B508A-S1, B508A-T2A and B508A-T4 revealed that they were cagA, babA and sabB/hopO negative. The differences among the three genomes were mainly related to outer membrane proteins, methylases, restriction modification systems and flagellar biosynthesis proteins. The strain B508A-T2A was the only one presenting the genotype vacA s1, and had the most distinct genome as it exhibited fewer shared genes, higher number of unique genes, and more polymorphisms were found in this genome. With all the accumulated information, no significant differences were found among the isolates regarding virulence and origin of the isolates. Nevertheless, some B508A-T2A genome characteristics could be linked to the pathogenicity of H. pylori.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Adria Carbo ◽  
Danyvid Olivares-Villagómez ◽  
Raquel Hontecillas ◽  
Josep Bassaganya-Riera ◽  
Rupesh Chaturvedi ◽  
...  

ABSTRACTThe development of gastritis duringHelicobacter pyloriinfection is dependent on an activated adaptive immune response orchestrated by T helper (Th) cells. However, the relative contributions of the Th1 and Th17 subsets to gastritis and control of infection are still under investigation. To investigate the role of interleukin-21 (IL-21) in the gastric mucosa duringH. pyloriinfection, we combined mathematical modeling of CD4+T cell differentiation within vivomechanistic studies. We infected IL-21-deficient and wild-type mice withH. pyloristrain SS1 and assessed colonization, gastric inflammation, cellular infiltration, and cytokine profiles. ChronicallyH. pylori-infected IL-21-deficient mice had higherH. pyloricolonization, significantly less gastritis, and reduced expression of proinflammatory cytokines and chemokines compared to these parameters in infected wild-type littermates. Thesein vivodata were used to calibrate anH. pyloriinfection-dependent, CD4+T cell-specific computational model, which then described the mechanism by which IL-21 activates the production of interferon gamma (IFN-γ) and IL-17 during chronicH. pyloriinfection. The model predicted activated expression of T-bet and RORγt and the phosphorylation of STAT3 and STAT1 and suggested a potential role of IL-21 in the modulation of IL-10. Driven by our modeling-derived predictions, we found reduced levels of CD4+splenocyte-specifictbx21androrcexpression, reduced phosphorylation of STAT1 and STAT3, and an increase in CD4+T cell-specific IL-10 expression inH. pylori-infected IL-21-deficient mice. Our results indicate that IL-21 regulates Th1 and Th17 effector responses during chronicH. pyloriinfection in a STAT1- and STAT3-dependent manner, therefore playing a major role controllingH. pyloriinfection and gastritis.IMPORTANCEHelicobacter pyloriis the dominant member of the gastric microbiota in more than 50% of the world’s population.H. pyloricolonization has been implicated in gastritis and gastric cancer, as infection withH. pyloriis the single most common risk factor for gastric cancer. Current data suggest that, in addition to bacterial virulence factors, the magnitude and types of immune responses influence the outcome of colonization and chronic infection. This study uses a combined computational and experimental approach to investigate how IL-21, a proinflammatory T cell-derived cytokine, maintains the chronic proinflammatory T cell immune response driving chronic gastritis duringH. pyloriinfection. This research will also provide insight into a myriad of other infectious and immune disorders in which IL-21 is increasingly recognized to play a central role. The use of IL-21-related therapies may provide treatment options for individuals chronically colonized withH. pylorias an alternative to aggressive antibiotics.


2017 ◽  
Vol 8 (2) ◽  
Author(s):  
Asieh Bolandi ◽  
Saam Torkan ◽  
Iman Alavi

In despite of the high clinical impact of Helicobacter pylori, its exact sources and routes of transmission are unknown. Dogs may play an imperative role in the transmission of H. pylori to humans. The current investigation was done to study the status of vacA and cagA genotypes in the H. pylori strains of dogs. One-hundred and fifty fecal samples were collected from healthy and complicated household dogs. Genomic DNA was extracted from fecal samples and presence of 16S rRNA gene was studied using the PCR amplification. Distribution of vacA and cagA genotypes were studied by the multiplex PCR. Thirteen out of 150 fecal samples (8.66%) were positive for H. pylori 16S rRNA gene. Prevalence of H. pylori in healthy and complicated dogs were 5.55% and 8.57%, respectively. Male had the higher prevalence of H. pylori (P=0.038). The most commonly detected genotypes among the H. pylori strains were vacAs1A (61.53%), cagA (38.46%), vacAm1a (38.46%), vacAs2 (30.76%) and vacAm2 (30.76%). The most commonly detected combined genotypes were s1aCagA (30.76%), s1am1a (23.07%), s2m1a (23.07%) and s2CagA (23.07%). Iranian household dogs harbor H. pylori in their fecal samples similar in genotypes of the vacA and cagA alleles which suggest that complicated and even healthy dogs may be the latent host of the H. pylori and its genotypes. However, supplementary studies are required to found the exact role of dogs as a definitive host of the H. pylori.


2001 ◽  
Vol 45 (1) ◽  
pp. 306-308 ◽  
Author(s):  
Dong H. Kwon ◽  
Miae Lee ◽  
J. J. Kim ◽  
J. G. Kim ◽  
F. A. K. El-Zaatari ◽  
...  

ABSTRACT The prevalence of furazolidone, nitrofurantoin, and metronidazole resistance among Helicobacter pylori strains was assessed with 431 clinical isolates. Fifty-two percent were metronidazole resistant, compared to 2% (7 of 431) with resistance to furazolidone and nitrofurantoin. All seven furazolidone- and nitrofurantoin-resistant isolates were also metronidazole resistant.rdxA, frxA, and fdxB knockouts did not result in furazolidone or nitrofurantoin resistance. These data suggest that furazolidone and nitrofurantoin may be good alternatives to metronidazole for treating H. pylori infection.


Sign in / Sign up

Export Citation Format

Share Document