scholarly journals RNA Sequencing for Gene Expression Profiles in Peripheral Blood Mononuclear Cells with Ankylosing Spondylitis RNA

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Dan Huang ◽  
Jian Liu ◽  
Yunxiang Cao ◽  
Lei Wan ◽  
Hui Jiang ◽  
...  

Several previous studies have attempted to investigate the regulatory mechanisms underlying gene expression in ankylosing spondylitis (AS). However, the specific molecular pathways underlying this condition remain unclear. Previous research used next-generation RNA sequencing to identify a series of differentially expressed genes (DEGs) in peripheral blood mononuclear cells (PBMCs) when compared between patients with AS and healthy controls, thus implying that these DEGs may be related to AS. Furthermore, by screening these DEGS, it may be possible to facilitate clinical diagnosis and optimize treatment strategies. In order to test this hypothesis, we recruited 15 patients with AS and 15 healthy controls. We randomly selected five subjects from each group of patients for RNA sequencing analysis. Sequence reads were generated by an Illumina HiSeq2500 platform and mapped on to the human reference genome using HISAT2. We successfully identified 973 significant DEGs (p<0.05) in PBMCs. When compared with controls, 644 of these genes were upregulated (with a fold change FC>2) in AS patients and 329 were downregulated (FC<0.5). Our analysis identified numerous genes related to immune response. Gene Ontology (GO) analysis indicated that these DEGs were significantly related to the positive regulation of epidermal growth factor-activated receptor activity, the positive regulation of the ERBB (erb-b2 receptor tyrosine kinase) signaling pathway, the differentiation of trophoblast giant cells, oxygen transport, immune-related pathways, and inflammation-related pathways. The DEGs were also closely related to the TNF and NF-κB signaling pathways. Six DEGs were verified by quantitative real-time polymerase chain reaction (qRT-PCR). Receiver operating characteristic (ROC) curve analysis indicated that IL6 may represent a useful biomarker for diagnosing AS. The development of new biomarkers may help us to elucidate the specific mechanisms involved in the development and progression of AS.

2020 ◽  
Author(s):  
Christopher S. McGinnis ◽  
David A. Siegel ◽  
Guorui Xie ◽  
Mars Stone ◽  
Zev J. Gartner ◽  
...  

ABSTRACTSingle-cell RNA sequencing (scRNA-seq) provides high-dimensional measurement of transcript counts in individual cells. However, high assay costs limit the study of large numbers of samples. Sample multiplexing technologies such as antibody hashing and MULTI-seq use sample-specific sequence tags to enable individual samples (e.g., different patients) to be sequenced in a pooled format before downstream computational demultiplexing. Critically, no study to date has evaluated whether the mixing of samples from different donors in this manner results in significant changes in gene expression resulting from alloreactivity (i.e., response to non-self immune antigens). The ability to demonstrate minimal to no alloreactivity is crucial to avoid confounded data analyses, particularly for cross-sectional studies evaluating changes in immunologic gene signatures,. Here, we compared the expression profiles of peripheral blood mononuclear cells (PBMCs) from a single donor with and without pooling with PBMCs isolated from other donors with different blood types. We find that there was no evidence of alloreactivity in the multiplexed samples following three distinct multiplexing workflows (antibody hashing, MULTI-seq, and in silico genotyping using souporcell). Moreover, we identified biases amongst antibody hashing sample classification results in this particular experimental system, as well as gene expression signatures linked to PBMC preparation method (e.g., Ficoll-Paque density gradient centrifugation with or without apheresis using Trima filtration).


2020 ◽  
Author(s):  
Caroline Vilas Boas de Melo ◽  
Maruf Ahmed Bhuiyan ◽  
Winfred Nyoroka Gatua ◽  
Stephen Kanyerezi ◽  
Leonard Uzairue ◽  
...  

AbstractIntroductionOver 24 million people have been infected globally with the novel coronavirus, SARS-CoV-2, with more than 820,000 succumbing to the resulting COVID-19 disease as of the end of August 2020. The molecular mechanisms underlying the pathogenesis of the disease are not completely elucidated. Thus, we aim to understand host response to SARS-CoV-2 infection by comparing samples collected from two distinct compartments (infection site and blood), obtained from COVID-19 subjects and healthy controls.MethodsWe used two publicly available gene expression datasets generated via RNA sequencing in two different samples; nasopharyngeal swabs and peripheral blood mononuclear cells (PBMCs). We performed a differential gene expression analysis between COVID-19 subjects and healthy controls in the two datasets and then functionally profiled their differentially expressed genes (DEGs). The genes involved in innate immunity were also determined.ResultsWe found a clear difference in the host response to SARS-CoV-2 infection between the two sample groups. In COVID-19 subjects, the nasopharyngeal sample group indicated upregulation of genes involved in cytokine activity and interferon signalling pathway, as well as downregulation of genes involved in oxidative phosphorylation and viral transcription. Host response in COVID-19 subjects for the PBMC group, involved upregulation of genes involved in the complement system and immunoglobulin mediated immune response. CXCL13, GABRE, IFITM3 were upregulated and HSPA1B was downregulated in COVID-19 subjects in both sample groups.ConclusionOur results indicate the host response to SARS-CoV-2 is compartmentalized and suggests potential biomarkers of response to SARS-CoV-2 infection.HighlightsTranscriptomic profiling from publicly available RNA-seq count data revealed a site-specific immune response in COVID-19.Host response was found cellular-mediated in nasopharyngeal samples and humoral-mediated in PBMCs samples.CXCL13, GABRE and IFITM3 commonly upregulated and HSPA1B downregulated in both sample groups highlights the potential of these molecules as markers of response to SARS-CoV-2 infection.


Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1773 ◽  
Author(s):  
Michela Alfarano ◽  
Donato Pastore ◽  
Vincenzo Fogliano ◽  
Casper Schalkwijk ◽  
Teresa Oliviero

Studies demonstrate that the potential health-beneficial effect of sulforaphane (SR), a compound formed in broccoli, is the result of a number of mechanisms including upregulation of phase two detoxification enzymes. Recent studies suggest that SR increases expression/activity of glyoxalase 1 (Glo1), an enzyme involved in the degradation of methylglyoxal, is major precursor of advanced glycation end products. Those compounds are associated with diabetes complications and other age-related diseases. In this study, the effect of SR on the expression/activity of Glo1 in peripheral blood mononuclear cells (PBMCs) from 8 healthy volunteers was investigated. PBMCs were isolated and incubated with SR (2.5 μM-concentration achievable by consuming a broccoli portion) for 24 h and 48 h. Glo1 activity/expression, reduced glutathione (GSH), and glutathione-S-transferase gene expression were measured. Glo1 activity was not affected while after 48 h a slight but significant increase of its gene expression (1.03-fold) was observed. GSTP1 expression slightly increased after 24 h incubation (1.08-fold) while the expressions of isoform GSTT2 and GSTM2 were below the limit of detection. GSH sharply decreased, suggesting the formation of GSH-SR adducts that may have an impact SR availability. Those results suggest that a regular exposure to SR by broccoli consumption or SR supplements may enhance Glo1.


Sign in / Sign up

Export Citation Format

Share Document