scholarly journals Fundamentals of T Cell Metabolism and Strategies to Enhance Cancer Immunotherapy

2021 ◽  
Vol 12 ◽  
Author(s):  
Guillermo O. Rangel Rivera ◽  
Hannah M. Knochelmann ◽  
Connor J. Dwyer ◽  
Aubrey S. Smith ◽  
Megan M. Wyatt ◽  
...  

Emerging reports show that metabolic pathways can be targeted to enhance T cell-mediated immunity to tumors. Yet, tumors consume key metabolites in the host to survive, thus robbing T cells of these nutrients to function and thrive. T cells are often deprived of basic building blocks for energy in the tumor, including glucose and amino acids needed to proliferate or produce cytotoxic molecules against tumors. Immunosuppressive molecules in the host further compromise the lytic capacity of T cells. Moreover, checkpoint receptors inhibit T cell responses by impairing their bioenergetic potential within tumors. In this review, we discuss the fundamental metabolic pathways involved in T cell activation, differentiation and response against tumors. We then address ways to target metabolic pathways to improve the next generation of immunotherapies for cancer patients.

Author(s):  
Helen Carrasco Hope ◽  
Robert J. Salmond

AbstractT cell activation, differentiation and proliferation is dependent upon and intrinsically linked to a capacity to modulate and adapt cellular metabolism. Antigen-induced activation stimulates a transcriptional programme that results in metabolic reprogramming, enabling T cells to fuel anabolic metabolic pathways and provide the nutrients to sustain proliferation and effector responses. Amino acids are key nutrients for T cells and have essential roles as building blocks for protein synthesis as well as in numerous metabolic pathways. In this review, we discuss the roles for uptake and biosynthesis of non-essential amino acids in T cell metabolism, activation and effector function. Furthermore, we highlight the effects of amino acid metabolism and depletion by cancer cells on T cell anti-tumour function and discuss approaches to modulate and improve T cell metabolism for improved anti-tumour function in these nutrient-depleted microenvironments.


Science ◽  
2021 ◽  
Vol 372 (6543) ◽  
pp. eaba4220 ◽  
Author(s):  
Tao Yue ◽  
Xiaoming Zhan ◽  
Duanwu Zhang ◽  
Ruchi Jain ◽  
Kuan-wen Wang ◽  
...  

Reactive oxygen species (ROS) increase in activated T cells because of metabolic activity induced to support T cell proliferation and differentiation. We show that these ROS trigger an oxidative stress response that leads to translation repression. This response is countered by Schlafen 2 (SLFN2), which directly binds transfer RNAs (tRNAs) to protect them from cleavage by the ribonuclease angiogenin. T cell–specific SLFN2 deficiency results in the accumulation of tRNA fragments, which inhibit translation and promote stress-granule formation. Interleukin-2 receptor β (IL-2Rβ) and IL-2Rγ fail to be translationally up-regulated after T cell receptor stimulation, rendering SLFN2-deficient T cells insensitive to interleukin-2’s mitogenic effects. SLFN2 confers resistance against the ROS-mediated translation-inhibitory effects of oxidative stress normally induced by T cell activation, permitting the robust protein synthesis necessary for T cell expansion and immunity.


Blood ◽  
2018 ◽  
Vol 131 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Sarah L. Buchan ◽  
Anne Rogel ◽  
Aymen Al-Shamkhani

In recent years, monoclonal antibodies (mAbs) able to reinvigorate antitumor T-cell immunity have heralded a paradigm shift in cancer treatment. The most high profile of these mAbs block the inhibitory checkpoint receptors PD-1 and CTLA-4 and have improved life expectancy for patients across a range of tumor types. However, it is becoming increasingly clear that failure of some patients to respond to checkpoint inhibition is attributable to inadequate T-cell priming. For full T-cell activation, 2 signals must be received, and ligands providing the second of these signals, termed costimulation, are often lacking in tumors. Members of the TNF receptor superfamily (TNFRSF) are key costimulators of T cells during infection, and there has been an increasing interest in harnessing these receptors to augment tumor immunity. We here review the immunobiology of 2 particularly promising TNFRSF target receptors, CD27 and OX40, and their respective ligands, CD70 and OX40L, focusing on their role within a tumor setting. We describe the influence of CD27 and OX40 on human T cells based on in vitro studies and on the phenotypes of several recently described individuals exhibiting natural deficiencies in CD27/CD70 and OX40. Finally, we review key literature describing progress in elucidating the efficacy and mode of action of OX40- and CD27-targeting mAbs in preclinical models and provide an overview of current clinical trials targeting these promising receptor/ligand pairings in cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Andrea M. Amitrano ◽  
Brandon J. Berry ◽  
Kihong Lim ◽  
Kyun-Do Kim ◽  
Richard E. Waugh ◽  
...  

Although cancer immunotherapy is effective against hematological malignancies, it is less effective against solid tumors due in part to significant metabolic challenges present in the tumor microenvironment (TME), where infiltrated CD8+ T cells face fierce competition with cancer cells for limited nutrients. Strong metabolic suppression in the TME is often associated with impaired T cell recruitment to the tumor site and hyporesponsive effector function via T cell exhaustion. Increasing evidence suggests that mitochondria play a key role in CD8+ T cell activation, effector function, and persistence in tumors. In this study, we showed that there was an increase in overall mitochondrial function, including mitochondrial mass and membrane potential, during both mouse and human CD8+ T cell activation. CD8+ T cell mitochondrial membrane potential was closely correlated with granzyme B and IFN-γ production, demonstrating the significance of mitochondria in effector T cell function. Additionally, activated CD8+ T cells that migrate on ICAM-1 and CXCL12 consumed significantly more oxygen than stationary CD8+ T cells. Inhibition of mitochondrial respiration decreased the velocity of CD8+ T cell migration, indicating the importance of mitochondrial metabolism in CD8+ T cell migration. Remote optical stimulation of CD8+ T cells that express our newly developed “OptoMito-On” successfully enhanced mitochondrial ATP production and improved overall CD8+ T cell migration and effector function. Our study provides new insight into the effect of the mitochondrial membrane potential on CD8+ T cell effector function and demonstrates the development of a novel optogenetic technique to remotely control T cell metabolism and effector function at the target tumor site with outstanding specificity and temporospatial resolution.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2419-2419
Author(s):  
Hung Nguyen ◽  
Kelley MK Haarberg ◽  
Yongxia Wu ◽  
Jianing Fu ◽  
Jessica Lauren Heinrichs ◽  
...  

Abstract Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective therapy for hematologic malignancies through T cell-mediated graft-versus-leukemia (GVL) effects, but allogeneic T cells often lead to severe graft-versus-host disease (GVHD). Cell metabolism plays pivotal roles in T-cell activation, differentiation, and function. However, understanding of T cell-metabolism is still superficial, and even less is known how metabolism regulates T-cell response to alloantigens and GVHD induction after allo-HCT. In this study, using a high-throughput liquid-and gas-chromatography-based metabolic approach, we compared the metabolic process of allogeneic versus syngeneic T cells at day 4 (early preclinical stage), day 7 (preclinical stage), and day 14 (clinical stage) post bone marrow transplantation (BMT), with naïve T cells as additional controls. Over 180 metabolites were identified and quantified. T cells after being transferred into pre-conditioned recipients were undergoing metabolic reprogramming reflected by attenuated levels of metabolites involving anabolic pathways of lipids, amino acids, nucleotides and carbohydrates in allogeneic and syngeneic T cells compared to those in naïve T cells. In comparison with syngeneic T cells, allogeneic T cells exhibited increased oxidative stress, reflected by higher levels of eicosanoid, cyclooxygenase, and lipoxygenase-oxidized eicosanoids, and decreased levels of antioxidant compounds such as glutathione (GSH) and glutathione disulfide (GSSG). To obtain biomass for robust proliferation followed by alloantigen stimulation, allogeneic T cells further increased pentose phosphate and polyamine synthesis by day 7 post-BMT. We also observed that allogeneic T cells and syngeneic T cells expressed comparable levels of metabolites in fatty acid and glutamine oxidized in tricarboxylic acid (TCA) cycle, which was much lower than those of naïve T cells. Importantly, allogeneic T cells exhibited higher levels of metabolites in glycolysis as compared to syngeneic T cells regardless of time points. Consistently, using Seahorse approach, we also found that allogeneic T cells significantly increased aerobic glycolysis as compared to syngeneic T cells post-BMT, whereas oxidative phosphorylation was similar. Moreover, blocking glycolysis with 2-deoxyglucose remarkably inhibited donor T-cell proliferation, expansion and Th1 differentiation after allo-BMT. Thus, aerobic glycolysis rather than mitochondrial oxidative phosphorylation is the preferential metabolic process required for the optimal expansion and activation of allogeneic T cells. Given mechanistic target of rapamycin (mTOR) plays an essential role in controlling T-cell metabolism particularly in glycolysis, we hypothesized that targeting mTOR would prevent GVHD by inhibiting glycolytic metabolism. Using pharmacological and genetic approaches, we unequivocally demonstrated that mTOR, especially mTORC1, was essential for T-cell glycolytic activity and for GVHD induction. Mechanistically, mTORC1 promoted T-cell activation, expansion, Th1 differentiation, and migration into GVHD target organs, but inhibited the generation of induced T regulatory cells. In conclusion, the current work provides compelling evidence that allogeneic T cells utilize glycolysis as a predominant metabolic process after BMT. Furthermore, we validate glycolysis or its key regulator, such as mTORC1, to be a valid therapeutic target for the control of GVHD. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
Vol 396 (6-7) ◽  
pp. 749-758 ◽  
Author(s):  
Niklas Beyersdorf ◽  
Nora Müller

Abstract Host T cell activation, a key step in obtaining adaptive immunity against pathogens, is initiated by the binding of the T cell receptor to a foreign antigenic peptide presented by the major histocompatibility complex on the surface of an antigen-presenting cell and, consequently, formation of an immunological synapse. Within the immunological synapse, the engagement of the T cell receptor in cooperation with simultaneous ligation of co-stimulatory molecules induces a precisely organized cascade of signaling events and pathways that regulate clonal expansion and differentiation of naïve T cells into effector T cells contributing to pathogen clearance. The biochemical changes that underlie T cell activation and differentiation, however, not only involve proteins but also lipids. In particular, catabolic cleavage of sphingomyelin generating ceramide can substantially influence functional responses in cells of the immune system. Changes in sphingomyelin and ceramide content have been reported to directly impact on membrane physiology, thus modifying signal transmission and interfering with diverse aspects of T cell activity. In this review we will focus on sphingomyelin breakdown/ceramide generation in T cells with regard to their function and development of T cell-mediated immunity.


1997 ◽  
Vol 185 (7) ◽  
pp. 1327-1336 ◽  
Author(s):  
Yan Wu ◽  
Yong Guo ◽  
Andy Huang ◽  
Pan Zheng ◽  
Yang Liu

T cell costimulation, particularly by the B7 family members B7-1 and B7-2, plays a critical role in regulating T cell–mediated immunity. Two molecules on T cells, CD28 and CTLA-4, are known to bind to B7. It has been suggested that CD28–B7 interaction promotes T cell response, whereas B7–CTLA-4 interaction downregulates T cell clonal expansion. However, the proposed responses of individual receptors to B7 have not been verified directly. Here, we report that B7-1 promotes clonal expansion of CD28-deficient T cells, and that the CD28-independent costimulatory activity is mediated by CTLA-4, as it is completely blocked by intact and Fab of anti–CTLA-4 mAb. In addition, a mutant B7-1 molecule, B7W88 >A, which has lost binding to CD28 but retained significant CTLA-4 binding activity, promotes T cell clonal expansion. Furthermore, while presence of CD28 enhances T cell response to B7-1, such response is also completely blocked by anti–CTLA-4 mAb. Taken together, our results demonstrate that B7–CTLA-4 interaction promotes T cell clonal expansion, and that optimal T cell response to B7 is achieved when both CD28 and CTLA-4 interact with B7. These results establish an important function of CTLA-4 in promoting T cell activation, and suggest an alternative interpretation of the function of CTLA-4 in T cell activation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Genevieve E. Martin ◽  
Debattama R. Sen ◽  
Matthew Pace ◽  
Nicola Robinson ◽  
Jodi Meyerowitz ◽  
...  

T cell dysfunction occurs early following HIV infection, impacting the emergence of non-AIDS morbidities and limiting curative efforts. ART initiated during primary HIV infection (PHI) can reverse this dysfunction, but the extent of recovery is unknown. We studied 66 HIV-infected individuals treated from early PHI with up to three years of ART. Compared with HIV-uninfected controls, CD4 and CD8 T cells from early HIV infection were characterised by T cell activation and increased expression of the immune checkpoint receptors (ICRs) PD1, Tim-3 and TIGIT. Three years of ART lead to partial – but not complete – normalisation of ICR expression, the dynamics of which varied for individual ICRs. For HIV-specific cells, epigenetic profiling of tetramer-sorted CD8 T cells revealed that epigenetic features of exhaustion typically seen in chronic HIV infection were already present early in PHI, and that ART initiation during PHI resulted in only a partial shift of the epigenome to one with more favourable memory characteristics. These findings suggest that although ART initiation during PHI results in significant immune reconstitution, there may be only partial resolution of HIV-related phenotypic and epigenetic changes.


2020 ◽  
Author(s):  
Scott E. Stimpson ◽  
Jing Chen ◽  
Brittney N. Newby ◽  
Ram Khattri ◽  
Harold D. Chapman ◽  
...  

AbstractTargeting human T-cell metabolism for modulating immune function requires an understanding of macronutrient utilization. Using metabolic inhibition during activation of human naïve CD8+ T-cells, we demonstrate blocking glycolysis or mitochondrial respiration prevents T-cell proliferation. However, after activation and differentiation, the metabolic program changes. Inhibition of glycolysis abolished cytotoxic T-lymphocyte (CTL) activity, whereas mitochondrial inhibition had no effect on CTL lytic function. Studies with uniformly labeled 13C-glucose confirmed CTL convert the majority of glucose to lactate. The role of glycolysis in CTL function was assessed using NOD models of Type 1 diabetes (T1D). Treatment of NOD models with a glycolysis inhibitor resulted in reduced and delayed T1D incidence and significantly preserved β-cell mass. We conclude glycolysis and mitochondrial ATP production are essential for efficient T-cell activation, but only glycolysis is essential for CTL lytic function. These data suggest targeting glycolysis in CTLs is a promising pathway to prevent T-cell-mediated autoimmunity.


1994 ◽  
Vol 77 (5) ◽  
pp. 2355-2359 ◽  
Author(s):  
N. Bitterman ◽  
N. Lahat ◽  
T. Rosenwald ◽  
A. Kinarty ◽  
Y. Melamed ◽  
...  

In a previous study we found a significant temporary decrease in the ratio of CD4/CD8 (helper, inducer/suppressor, cytotoxic) T lymphocytes in the peripheral blood of healthy human volunteers after exposure to a single commonly used profile of hyperbaric oxygen (HBO). The transient nature of the changes suggested redistribution of T-cell subsets. The purpose of the present study was to verify such a redistribution and to locate possible target organs in an animal model. A single exposure of rats to HBO (0.28 MPa) induced a highly significant rapid decrease in the CD4/CD8 ratio in peripheral blood count (P < 0.0001), confirming our previous findings in humans. HBO also induced a significant increase in the CD4/CD8 ratio in the lungs and lymph nodes (P < 0.001) and a significant decrease in the ratio in the spleen (P < 0.01). Furthermore, exposure to HBO induced a significant increase in T cells bearing surface interleukin-2 receptors in the blood, spleen, lungs, and lymph glands (P < 0.001) and a significant decrease in T cells expressing alpha beta-receptors in the lungs (P < 0.001) and lymph glands (P < 0.05). Our findings suggest rapid T-cell activation after a brief exposure to HBO, with shifts of CD4 and CD8 subsets and variations in T-cell receptor type. These rapid changes in the parameters of cell-mediated immunity may represent the activation of protective mechanisms against the toxic effect of oxygen or the early stages of pulmonary oxygen toxicity.


Sign in / Sign up

Export Citation Format

Share Document