scholarly journals The Role of Non-essential Amino Acids in T Cell Function and Anti-tumour Immunity

Author(s):  
Helen Carrasco Hope ◽  
Robert J. Salmond

AbstractT cell activation, differentiation and proliferation is dependent upon and intrinsically linked to a capacity to modulate and adapt cellular metabolism. Antigen-induced activation stimulates a transcriptional programme that results in metabolic reprogramming, enabling T cells to fuel anabolic metabolic pathways and provide the nutrients to sustain proliferation and effector responses. Amino acids are key nutrients for T cells and have essential roles as building blocks for protein synthesis as well as in numerous metabolic pathways. In this review, we discuss the roles for uptake and biosynthesis of non-essential amino acids in T cell metabolism, activation and effector function. Furthermore, we highlight the effects of amino acid metabolism and depletion by cancer cells on T cell anti-tumour function and discuss approaches to modulate and improve T cell metabolism for improved anti-tumour function in these nutrient-depleted microenvironments.

2021 ◽  
Vol 12 ◽  
Author(s):  
Guillermo O. Rangel Rivera ◽  
Hannah M. Knochelmann ◽  
Connor J. Dwyer ◽  
Aubrey S. Smith ◽  
Megan M. Wyatt ◽  
...  

Emerging reports show that metabolic pathways can be targeted to enhance T cell-mediated immunity to tumors. Yet, tumors consume key metabolites in the host to survive, thus robbing T cells of these nutrients to function and thrive. T cells are often deprived of basic building blocks for energy in the tumor, including glucose and amino acids needed to proliferate or produce cytotoxic molecules against tumors. Immunosuppressive molecules in the host further compromise the lytic capacity of T cells. Moreover, checkpoint receptors inhibit T cell responses by impairing their bioenergetic potential within tumors. In this review, we discuss the fundamental metabolic pathways involved in T cell activation, differentiation and response against tumors. We then address ways to target metabolic pathways to improve the next generation of immunotherapies for cancer patients.


Author(s):  
Zhongping Yin ◽  
Ling Bai ◽  
Wei Li ◽  
Tanlun Zeng ◽  
Huimin Tian ◽  
...  

Abstract T cells play important roles in anti-tumor immunity. Emerging evidence has revealed that distinct metabolic changes impact the activation and differentiation of T cells. Tailoring immune responses by manipulating cellular metabolic pathways and the identification of new targets may provide new options for cancer immunotherapy. In this review, we focus on recent advances in the metabolic reprogramming of different subtypes of T cells and T cell functions. We summarize how metabolic pathways accurately regulate T cell development, differentiation, and function in the tumor microenvironment. Because of the similar metabolism in activated T cells and tumor cells, we also describe the effect of the tumor microenvironment on T cell metabolism reprogramming, which may provide strategies for maximal anti-cancer effects and enhancing the immunity of T cells. Thus, studies of T lymphocyte metabolism can not only facilitate the basic research of immune metabolism, but also provide potential targets for drug development and new strategies for clinical treatment of cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Michihito Kono ◽  
Nobuya Yoshida ◽  
George C. Tsokos

T cell metabolism is central to cell proliferation, survival, differentiation, and aberrations have been linked to the pathophysiology of systemic autoimmune diseases. Besides glycolysis and fatty acid oxidation/synthesis, amino acid metabolism is also crucial in T cell metabolism. It appears that each T cell subset favors a unique metabolic process and that metabolic reprogramming changes cell fate. Here, we review the mechanisms whereby amino acid transport and metabolism affects T cell activation, differentiation and function in T cells in the prototype systemic autoimmune disease systemic lupus erythematosus. New insights in amino acid handling by T cells should guide approaches to correct T cell abnormalities and disease pathology.


2021 ◽  
Author(s):  
James Robert Byrnes ◽  
Amy M Weeks ◽  
Julia Carnevale ◽  
Eric Shifrut ◽  
Lisa Kirkemo ◽  
...  

Immunosuppressive factors in the tumor microenvironment (TME) impair T cell function and limit the anti-tumor immune response. T cell surface receptors that influence interactions and function in the TME are already proven targets for cancer immunotherapy. However, surface proteome remodeling of primary human T cells in response to suppressive forces in the TME has never been characterized systematically. Using a reductionist cell culture approach with primary human T cells and SILAC-based quantitative cell surface capture glycoproteomics, we examined how two immunosuppressive TME factors, regulatory T cells (Tregs) and hypoxia, globally affect the activated CD8+ surface proteome (surfaceome). Surprisingly, the CD8+/Treg co-culture only modestly affected the CD8+ surfaceome, but did reverse several activation-induced surfaceomic changes. In contrast, hypoxia dramatically altered the CD8+ surfaceome in a manner consistent with both metabolic reprogramming and induction of an immunosuppressed state. The CD4+ T cell surfaceome similarly responded to hypoxia, revealing a novel hypoxia-induced surface receptor program. Our findings are consistent with the premise that hypoxic environments create a metabolic challenge for T cell activation, which may underlie the difficulty encountered in treating solid tumors with immunotherapies. Together, the data presented here provide insight into how suppressive TME factors remodel the T cell surfaceome and represent a valuable resource to inform future therapeutic efforts to enhance T cell function in the TME.


2021 ◽  
Vol 12 ◽  
Author(s):  
Andrea M. Amitrano ◽  
Brandon J. Berry ◽  
Kihong Lim ◽  
Kyun-Do Kim ◽  
Richard E. Waugh ◽  
...  

Although cancer immunotherapy is effective against hematological malignancies, it is less effective against solid tumors due in part to significant metabolic challenges present in the tumor microenvironment (TME), where infiltrated CD8+ T cells face fierce competition with cancer cells for limited nutrients. Strong metabolic suppression in the TME is often associated with impaired T cell recruitment to the tumor site and hyporesponsive effector function via T cell exhaustion. Increasing evidence suggests that mitochondria play a key role in CD8+ T cell activation, effector function, and persistence in tumors. In this study, we showed that there was an increase in overall mitochondrial function, including mitochondrial mass and membrane potential, during both mouse and human CD8+ T cell activation. CD8+ T cell mitochondrial membrane potential was closely correlated with granzyme B and IFN-γ production, demonstrating the significance of mitochondria in effector T cell function. Additionally, activated CD8+ T cells that migrate on ICAM-1 and CXCL12 consumed significantly more oxygen than stationary CD8+ T cells. Inhibition of mitochondrial respiration decreased the velocity of CD8+ T cell migration, indicating the importance of mitochondrial metabolism in CD8+ T cell migration. Remote optical stimulation of CD8+ T cells that express our newly developed “OptoMito-On” successfully enhanced mitochondrial ATP production and improved overall CD8+ T cell migration and effector function. Our study provides new insight into the effect of the mitochondrial membrane potential on CD8+ T cell effector function and demonstrates the development of a novel optogenetic technique to remotely control T cell metabolism and effector function at the target tumor site with outstanding specificity and temporospatial resolution.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aurélien Azam ◽  
Sergio Mallart ◽  
Stephane Illiano ◽  
Olivier Duclos ◽  
Catherine Prades ◽  
...  

Non-natural modifications are widely introduced into peptides to improve their therapeutic efficacy, but their impact on immunogenicity remains largely unknown. As the CD4 T-cell response is a key factor in triggering immunogenicity, we investigated the effect of introducing D-amino acids (Daa), amino isobutyric acid (Aib), N-methylation, Cα-methylation, reduced amide, and peptoid bonds into an immunoprevalent T-cell epitope on binding to a set of HLA-DR molecules, recognition, and priming of human T cells. Modifications are differentially accepted at multiple positions, but are all tolerated in the flanking regions. Introduction of Aib and Daa in the binding core had the most deleterious effect on binding to HLA-DR molecules and T-cell activation. Their introduction at the positions close to the P1 anchor residue abolished T-cell priming, suggesting they might be sufficient to dampen peptide immunogenicity. Other modifications led to variable effects on binding to HLA-DR molecules and T-cell reactivity, but none exhibited an increased ability to stimulate T cells. Altogether, non-natural modifications appear generally to diminish binding to HLA-DR molecules and hence T-cell stimulation. These data might guide the design of therapeutic peptides to make them less immunogenic.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2419-2419
Author(s):  
Hung Nguyen ◽  
Kelley MK Haarberg ◽  
Yongxia Wu ◽  
Jianing Fu ◽  
Jessica Lauren Heinrichs ◽  
...  

Abstract Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective therapy for hematologic malignancies through T cell-mediated graft-versus-leukemia (GVL) effects, but allogeneic T cells often lead to severe graft-versus-host disease (GVHD). Cell metabolism plays pivotal roles in T-cell activation, differentiation, and function. However, understanding of T cell-metabolism is still superficial, and even less is known how metabolism regulates T-cell response to alloantigens and GVHD induction after allo-HCT. In this study, using a high-throughput liquid-and gas-chromatography-based metabolic approach, we compared the metabolic process of allogeneic versus syngeneic T cells at day 4 (early preclinical stage), day 7 (preclinical stage), and day 14 (clinical stage) post bone marrow transplantation (BMT), with naïve T cells as additional controls. Over 180 metabolites were identified and quantified. T cells after being transferred into pre-conditioned recipients were undergoing metabolic reprogramming reflected by attenuated levels of metabolites involving anabolic pathways of lipids, amino acids, nucleotides and carbohydrates in allogeneic and syngeneic T cells compared to those in naïve T cells. In comparison with syngeneic T cells, allogeneic T cells exhibited increased oxidative stress, reflected by higher levels of eicosanoid, cyclooxygenase, and lipoxygenase-oxidized eicosanoids, and decreased levels of antioxidant compounds such as glutathione (GSH) and glutathione disulfide (GSSG). To obtain biomass for robust proliferation followed by alloantigen stimulation, allogeneic T cells further increased pentose phosphate and polyamine synthesis by day 7 post-BMT. We also observed that allogeneic T cells and syngeneic T cells expressed comparable levels of metabolites in fatty acid and glutamine oxidized in tricarboxylic acid (TCA) cycle, which was much lower than those of naïve T cells. Importantly, allogeneic T cells exhibited higher levels of metabolites in glycolysis as compared to syngeneic T cells regardless of time points. Consistently, using Seahorse approach, we also found that allogeneic T cells significantly increased aerobic glycolysis as compared to syngeneic T cells post-BMT, whereas oxidative phosphorylation was similar. Moreover, blocking glycolysis with 2-deoxyglucose remarkably inhibited donor T-cell proliferation, expansion and Th1 differentiation after allo-BMT. Thus, aerobic glycolysis rather than mitochondrial oxidative phosphorylation is the preferential metabolic process required for the optimal expansion and activation of allogeneic T cells. Given mechanistic target of rapamycin (mTOR) plays an essential role in controlling T-cell metabolism particularly in glycolysis, we hypothesized that targeting mTOR would prevent GVHD by inhibiting glycolytic metabolism. Using pharmacological and genetic approaches, we unequivocally demonstrated that mTOR, especially mTORC1, was essential for T-cell glycolytic activity and for GVHD induction. Mechanistically, mTORC1 promoted T-cell activation, expansion, Th1 differentiation, and migration into GVHD target organs, but inhibited the generation of induced T regulatory cells. In conclusion, the current work provides compelling evidence that allogeneic T cells utilize glycolysis as a predominant metabolic process after BMT. Furthermore, we validate glycolysis or its key regulator, such as mTORC1, to be a valid therapeutic target for the control of GVHD. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 217 (8) ◽  
Author(s):  
Kevin P. Meng ◽  
Fatemeh S. Majedi ◽  
Timothy J. Thauland ◽  
Manish J. Butte

Upon immunogenic challenge, lymph nodes become mechanically stiff as immune cells activate and proliferate within their encapsulated environments, and with resolution, they reestablish a soft baseline state. Here we show that sensing these mechanical changes in the microenvironment requires the mechanosensor YAP. YAP is induced upon activation and suppresses metabolic reprogramming of effector T cells. Unlike in other cell types in which YAP promotes proliferation, YAP in T cells suppresses proliferation in a stiffness-dependent manner by directly restricting the translocation of NFAT1 into the nucleus. YAP slows T cell responses in systemic viral infections and retards effector T cells in autoimmune diabetes. Our work reveals a paradigm whereby tissue mechanics fine-tune adaptive immune responses in health and disease.


2021 ◽  
Vol 22 (8) ◽  
pp. 3906
Author(s):  
Alessandra Rossi ◽  
Ilenia Pacella ◽  
Silvia Piconese

T cells undergo activation and differentiation programs along a continuum of states that can be tracked through flow cytometry using a combination of surface and intracellular markers. Such dynamic behavior is the result of transcriptional and post-transcriptional events, initiated and sustained by the activation of specific transcription factors and by epigenetic remodeling. These signaling pathways are tightly integrated with metabolic routes in a bidirectional manner: on the one hand, T cell receptors and costimulatory molecules activate metabolic reprogramming; on the other hand, metabolites modify T cell transcriptional programs and functions. Flow cytometry represents an invaluable tool to analyze the integration of phenotypical, functional, metabolic and transcriptional features, at the single cell level in heterogeneous T cell populations, and from complex microenvironments, with potential clinical application in monitoring the efficacy of cancer immunotherapy. Here, we review the most recent advances in flow cytometry-based analysis of gene expression, in combination with indicators of mitochondrial activity, with the aim of revealing and characterizing major metabolic pathways in T cells.


2020 ◽  
Author(s):  
William D. Green ◽  
Abrar E. Al-Shaer ◽  
Qing Shi ◽  
Nancie J MacIver ◽  
Melinda A. Beck ◽  
...  

ABSTRACTBackgroundObesity increases influenza disease risk in millions of adults worldwide. In this study, we investigated the effect of diet-induced obesity on pulmonary CD8+ T cell metabolism and function as a mechanism of impairment.MethodsMale C57BL/6J mice were fed either control (10% kcal/g) or high-fat (60% kcal/g) diet. Sub-lethal A/PR/8/34 influenza virus infection generated a robust pulmonary immune response. T cell metabolism and function were assessed at day 10 and day 24 post infection.ResultsAt day 10 post infection, CD8+ T cells from obese mice had impaired oxidative and glycolytic metabolism, greater fatty acid uptake, and decreased effector populations and cytokine production. At infection resolution, obese mice had lower numbers of naïve and central memory CD8+ T cell populations in the lungs.ConclusionDiet-induced obesity increases influenza virus pathogenesis through CD8+ T cell mediated metabolic reprogramming resulting in suppressed effector CD8+ T cell function.SummaryDiet-induced obesity impairs the metabolism of pulmonary CD8+ T cells resulting in reduced effector CD8+ T cells and cytokine production following primary influenza infection.


Sign in / Sign up

Export Citation Format

Share Document