scholarly journals The Mechanism of Action of Antigen Processing Independent T Cell Epitopes Designed for Immunotherapy of Autoimmune Diseases

2021 ◽  
Vol 12 ◽  
Author(s):  
Ella R. Shepard ◽  
Anja Wegner ◽  
Elaine V. Hill ◽  
Bronwen R. Burton ◽  
Sarah Aerts ◽  
...  

Immunotherapy with antigen-processing independent T cell epitopes (apitopes) targeting autoreactive CD4+ T cells has translated to the clinic and been shown to modulate progression of both Graves’ disease and multiple sclerosis. The model apitope (Ac1-9[4Y]) renders antigen-specific T cells anergic while repeated administration induces both Tr1 and Foxp3+ regulatory cells. Here we address why CD4+ T cell epitopes should be designed as apitopes to induce tolerance and define the antigen presenting cells that they target in vivo. Furthermore, we reveal the impact of treatment with apitopes on CD4+ T cell signaling, the generation of IL-10-secreting regulatory cells and the systemic migration of these cells. Taken together these findings reveal how apitopes induce tolerance and thereby mediate antigen-specific immunotherapy of autoimmune diseases.

1997 ◽  
Vol 185 (6) ◽  
pp. 1043-1054 ◽  
Author(s):  
Kevin L. Legge ◽  
Booki Min ◽  
Nicholas T. Potter ◽  
Habib Zaghouani

T cell receptor (TCR) antagonism is being considered for inactivation of aggressive T cells and reversal of T cell–mediated autoimmune diseases. TCR antagonist peptides silence aggressive T cells and reverse experimental allergic encephalomyelitis induced with free peptides. However, it is not clear whether free antagonist peptides could reverse natural disease where the antigen is presumably available for endocytic processing and peptides gain access to newly synthesized class II MHC molecules. Using an efficient endocytic presentation system, we demonstrate that a proteolipid protein (PLP) TCR antagonist peptide (PLP-LR) presented on an Ig molecule (IgPLP-LR) abrogates the activation of T cells stimulated with free encephalitogenic PLP peptide (PLP1), native PLP, or an Ig containing PLP1 peptide (Ig-PLP1). Free PLP-LR abolishes T cell activation when the stimulator is free PLP1 peptide, but has no measurable effect when the stimulator is the native PLP or Ig-PLP1. In vivo, Ig-PLP1 induces a T cell response to PLP1 peptide. However, when coadministered with Ig-PLP-LR, the response to PLP1 peptide is markedly reduced whereas the response to PLP-LR is normal. Free PLP-LR coadministered with Ig-PLP1 has no effect on the T cell response to PLP1. These findings indicate that endocytic presentation of an antagonist peptide by Ig outcompete both external and endocytic agonist peptides whereas free antagonist hinders external but not endocytic agonist peptide. Direct contact with antagonist ligand and/or trans-regulation by PLP-LR–specific T cells may be the operative mechanism for Ig-PLP-LR–mediated downregulation of PLP1-specific T cells in vivo. Efficient endocytic presentation of antagonist peptides, which is the fundamental event for either mechanism, may be critical for reversal of spontaneous T cell–mediated autoimmune diseases where incessant endocytic antigen processing could be responsible for T cell aggressivity.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1959-1959
Author(s):  
Jeong A Park ◽  
Hong fen Guo ◽  
Hong Xu ◽  
Nai-Kong V. Cheung

Background Ex Vivo Armed T-cells (EVAT) carrying zeptomoles (10-21M) of T-cell engaging GD2-bispecific antibody (GD2-EVAT) or HER2-bispecific antibodies (HER2-EVAT) have potent anti-tumor activity against GD2(+) and/or HER2(+) solid tumors. Strategies to further optimize this approach are highly relevant. PD-1 is a key immune checkpoint receptor expressed mainly by activated T-cells and mediates immune suppression by binding to its ligands PD-L1 or PD-L2. Upregulation of PD-L1 has been found in many cancers including osteosarcoma and associated with aggressive disease and poor outcome. While the use of immune checkpoint inhibitors (ICIs) seems logical, the ideal timing when combined with T-cell engaging bispecific antibody (T-BsAb) or EVAT has yet to be defined. Here, we described the effects of anti-PD-1 or anti-PD-L1 antibodies on GD2-EVAT or HER2-EVAT therapy and explored the impact of its timing in the treatment of osteosarcoma which is GD2(+), HER2(+) and PD-L1(+). Methods GD2-BsAb and HER-BsAb were built using the IgG(L)-scFv format (Can Immunol Res, 3:266, 2015, Oncoimmunology, PMID:28405494). T-cells from healthy volunteer donors were isolated, and cultured ex vivo in the presence of CD3/CD28 beads plus 30 IU/mL of interleukin 2 (IL-2). Between day 7 and day 14, activated T-cells (ATCs) were harvested and armed for 20 minutes at room temperature with GD2-BsAb or HER2-BsAb. In vivo anti-tumor activity against GD2(+), HER2(+), and PD-L1(+) osteosarcoma cell line xenografts was tested in BALB-Rag2-/-IL-2R-γc-KO mice. Anti-human PD-1 antibody (pembrolizumab, anti-PD-1) or anti-human PD-L1 antibody (atezolizumab, anti-PD-L1) were tested for synergy with GD2-EVAT or HER2-EVAT therapy. Results The PD-1 expression increased among T-cells that circulated in the blood, that infiltrated the spleen or the tumor after EVAT therapy. While anti-PD-L1 combination therapy with GD2-EVAT or HER2-EVAT improved anti-tumor response against osteosarcoma (P=0.0123 and P=0.0004), anti-PD-1 did not (all P>0.05). The addition of anti-PD-L1 significantly increased T-cell survival in blood and T-cell infiltration of tumor when compared to GD2-EVAT or HER2-EVAT alone (all P<0.0001). Treatment of GD2-EVAT or anti-PD-L1 plus GD2-EVAT downregulated GD2 expression on tumors, but anti-PD-1 plus GD2-EVAT did not. For the next step we tested the impact of different combination schedules of ICIs on GD2-EVAT therapy. Concurrent anti-PD-1 (6 doses along with GD2-EVAT therapy) interfered with GD2-EVAT, while sequential anti-PD-1 (6 doses after GD2-EVAT) did not make a significant effect (P>0.05). On the other hand, while the concurrent use of anti-PD-L1 did not show benefit on GD2-EVAT, sequentially administered anti-PD-L1 produced a significant improvement in tumor control when compared to anti-PD-L1 or GD2-EVAT alone (P=0.002 and P=0.018). When anti-PD-L1 treatment was extended (12 doses after GD2-EVAT), the anti-tumor effect was most pronounced compared to GD2-EVAT alone (P <0.0001), which translated into improved survival (P=0.0057). These in vivo anti-tumor responses were associated with increased CD8(+) tumor infiltrating lymphocytes (TILs) of tumor. Conclusion In the arming platform, large numbers of target-specific T-cells can be generated, and this EVAT therapy is a highly effective cellular treatment with high potency in preclinical models. In addition, the advantage of ex vivo cytokine release following T-cell arming and activation could reduce or avoid life threatening cytokine storm if such activation was to proceed in vivo. Adoptive T-cell therapy induced immune response upregulates the inhibitory immune checkpoint PD-1/PD-L1 pathway, and combination treatment with anti-PD-L1 antibody, especially when combined as sequential therapy and continuously treated, significantly improved anti-tumor effect of EVAT, partly through increase in CD8(+) TILs infiltration. Disclosures Xu: MSK: Other: co-inventors in patents on GD2 bispecific antibody and HER2 bispecific antibody. Cheung:Ymabs: Patents & Royalties, Research Funding.


2021 ◽  
Author(s):  
Marta Calvet-Mirabent ◽  
Daniel T. Claiborne ◽  
Maud Deruaz ◽  
Serah Tanno ◽  
Carla Serra ◽  
...  

Effective function of CD8+ T cells and enhanced innate activation of dendritic cells (DC) in response to HIV-1 is linked to protective antiviral immunity in controllers. Manipulation of DC targeting the master regulator TANK-binding Kinase 1 (TBK1) might be useful to acquire controller-like properties. Here, we evaluated the impact of TBK1-primed DC inducing protective CD8+ T cell responses in lymphoid tissue and peripheral blood and their association with reduced HIV-1 disease progression in vivo in the humanized bone marrow, liver and thymus (hBLT) mouse model. A higher proportion of hBLT-mice vaccinated with TBK1-primed DC exhibited less severe CD4+ T cell depletion following HIV-1 infection compared to control groups. This was associated with infiltration of CD8+ T cells in the white pulp from the spleen, reduced spread of infected p24+ cells to secondary lymphoid organs and with preserved abilities of CD8+ T cells from the spleen and blood of vaccinated animals to induce specific polyfunctional responses upon antigen stimulation. Therefore, TBK1-primed DC might be an useful tool for subsequent vaccine studies.


2019 ◽  
Vol 93 (11) ◽  
Author(s):  
Jennifer A. Juno ◽  
Kathleen M. Wragg ◽  
Anne B. Kristensen ◽  
Wen Shi Lee ◽  
Kevin J. Selva ◽  
...  

ABSTRACT Sexual HIV-1 transmission occurs primarily in the presence of semen. Although data from macaque studies suggest that CCR5+ CD4+ T cells are initial targets for HIV-1 infection, the impact of semen on T cell CCR5 expression and ligand production remains inconclusive. To determine if semen modulates the lymphocyte CCR5 receptor/ligand axis, primary human T cell CCR5 expression and natural killer (NK) cell anti-HIV-1 antibody-dependent beta chemokine production was assessed following seminal plasma (SP) exposure. Purified T cells produce sufficient quantities of RANTES to result in a significant decline in CCR5bright T cell frequency following 16 h of SP exposure (P = 0.03). Meanwhile, NK cells retain the capacity to produce limited amounts of MIP-1α/MIP-1β in response to anti-HIV-1 antibody-dependent stimulation (median, 9.5% MIP-1α+ and/or MIP-1β+), despite the immunosuppressive nature of SP. Although these in vitro experiments suggest that SP-induced CCR5 ligand production results in the loss of surface CCR5 expression on CD4+ T cells, the in vivo implications are unclear. We therefore vaginally exposed five pigtail macaques to SP and found that such exposure resulted in an increase in CCR5+ HIV-1 target cells in three of the animals. The in vivo data support a growing body of evidence suggesting that semen exposure recruits target cells to the vagina that are highly susceptible to HIV-1 infection, which has important implications for HIV-1 transmission and vaccine design. IMPORTANCE The majority of HIV-1 vaccine studies do not take into consideration the impact that semen exposure might have on the mucosal immune system. In this study, we demonstrate that seminal plasma (SP) exposure can alter CCR5 expression on T cells. Importantly, in vitro studies of T cells in culture cannot replicate the conditions under which immune cells might be recruited to the genital mucosa in vivo, leading to potentially erroneous conclusions about the impact of semen on mucosal HIV-1 susceptibility.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 829 ◽  
Author(s):  
Klaus-Peter Künkele ◽  
Daniela Wesch ◽  
Hans-Heinrich Oberg ◽  
Martin Aichinger ◽  
Verena Supper ◽  
...  

Cancer therapies based on in vivo stimulation, or on adoptive T cell transfer of Vγ9Vδ2 T cells, have been tested in the past decades but have failed to provide consistent clinical efficacy. New, promising concepts such as γδ Chimeric Antigen Receptor (CAR) -T cells and γδ T-cell engagers are currently under preclinical evaluation. Since the impact of factors, such as the relatively low abundance of γδ T cells within tumor tissue is still under investigation, it remains to be shown whether these effector T cells can provide significant efficacy against solid tumors. Here, we highlight key learnings from the natural role of Vγ9Vδ2 T cells in the elimination of host cells bearing intracellular bacterial agents and we translate these into the setting of tumor therapy. We discuss the availability and relevance of preclinical models as well as currently available tools and knowledge from a drug development perspective. Finally, we compare advantages and disadvantages of existing therapeutic concepts and propose a role for Vγ9Vδ2 T cells in immune-oncology next to Cluster of Differentiation (CD) 3 activating therapies.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3110-3110
Author(s):  
Erwan R. Piriou ◽  
Christine Jansen ◽  
Karel van Dort ◽  
Iris De Cuyper ◽  
Nening M. Nanlohy ◽  
...  

Abstract Objective: EBV-specific CD8+ T cells have been extensively studied in various settings, and appear to play a major role in the control of EBV-related malignancies. In contrast, it is still unclear whether EBV-specific CD4+ T cells play a role in vivo. To study this question, an assay was developed to measure the CD4+ T-cell response towards two EBV antigens, in both healthy (n=14) and HIV-infected subjects (n=23). In addition, both HAART-treated (n=12) and untreated HIV+ individuals (n=14) - including progressors to EBV-related lymphoma - were studied longitudinally. Methods: EBV-specific CD4+ T cells were stimulated with peptide pools from latent protein EBNA1 and lytic protein BZLF1, and detected by measurement of IFNg-production. Results: After direct ex vivo stimulation, EBNA1 or BZLF1-specific IFNg- (and/or IL2) producing CD4+ T cell numbers were low, and measurable in less than half of the subjects studied (either HIV- and HIV+). Therefore, PBMC were cultured for 12 days in the presence of peptides and IL2 (from day 3), and then restimulated with peptides, allowing specific and reproducible expansion of EBV-specific CD4+ T cells, independent of HLA type and ex vivo antigen processing. Interestingly, numbers of EBV-specific CD4+ T cells inversely correlated with EBV viral load, implying an important role for EBV-specific CD4+ T cells in the control of EBV in vivo. Untreated HIV-infected individuals had a lower CD4+ T cell response to EBNA1 and BZLF1 as compared to healthy EBV carriers and HAART-treated HIV+ subjects. In longitudinal samples, EBNA1-specific, but not BZLF1-specific T-cell numbers increased after HAART, while EBV load was not affected by treatment. In all the progressors to EBV-related lymphoma, EBV-specific CD4+ T cells were lost at least 24 months before lymphoma diagnosis. Conclusions: Both cross-sectional and longitudinal data suggest an important role for EBV-specific CD4+ T cells in the control of EBV-related malignancies. Furthermore, it seems that HAART treatment leads to recovery of EBNA1-specific, but not BZLF1-specific CD4+ T-cell responses, implying changes in the latency pattern of EBV, despite an unaltered cell-associated EBV DNA load. Thus, early HAART treatment might prevent loss of specific CD4+ T-cell help and progression to NHL.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3106-3106
Author(s):  
Bruno Nervi ◽  
Michael P. Rettig ◽  
Julie K. Ritchey ◽  
Gerhard Bauer ◽  
Jon Walker ◽  
...  

Abstract GvHD remains a major cause of morbidity and mortality following allogeneic hematopoietic stem cell transplantation and donor lymphocyte infusion. The human GvHD pathophysiology includes recipient tissue destruction and proinflammatory cytokine production associated with the conditioning regimen; donor T cells become allo-activated, proliferate, and mediate tissue injury in various organs, including the liver, skin, and gut. Modern therapeutic strategies to control GvHD while maintaining the beneficial graft-versus-leukemia effects require ex vivo T cell stimulation and expansion. Multiple studies have demonstrated that these ex vivo expanded T cells exhibit decreased survival and function in vivo, including reduced alloreactivity and GvHD potential. Unfortunately no in vivo models exist to consistently examine the impact of ex vivo manipulation of human T cells (HuT) on T cell function. Naive HuT were compared to HuT activated using CD3/28 beads (XcyteTMDynabeads) with 50 U/ml IL-2 for 4 days (Act). We initially evaluated the HuT engraftment and GvHD potential of naive and Act in RAG2γ null mice (n=22) conditioned with clodronate liposomes on day −1 and 350cGy on day 0, as previously described by others. We injected 107 and 1.5x107 naive or Act HuT intravenously (iv). All mice exhibited low HuT engraftment and no lethal GvHD. NOD SCIDβ 2M null mice (β 2M) were next conditioned with 250cGy on day −1 (n=34), or 300cGy on day 0 (n=21). 107 naive vs Act HuT were injected retroorbitaly (ro). Lower HuT doses or iv injection resulted in no expansion or GvHD. Engraftment of HuT in peripheral blood of recipient mice was evaluated weekly by FACS and euthanasia was performed if mice lost &gt; 20% body weight. 60% of the mice conditioned with 250cGy that received naive HuT developed lethal GvHD, in comparison to 75% of mice that received 300cGy and nave HuT, and 100% of mice that received 300cGy and Act HuT. Table 1 250cGy 300cGy Naive (n=34) Naive (n=8) Activated (n=13) *p&lt;0.02 PB engraftment (%HuT) 20%±15 33%±21 59%±19 Lethal GvHD 60% 75% 100% All mice receiving 300cGy had well preserved CD4/CD8 ratios (1–1.5). Tissue infiltration was greatest in mice that had received 300cGy and Act HuT (spleen, liver, lung, kidney: 50–70%). Of interest, serum levels of hu IFNγ dramatically increased over time in all mice who went on to develop lethal GvHD (day 3=270 ug/ml and day 15=36,000 ug/ml) compared to mice that did not develop lethal GvHD (day 10=40 ug/ml and day 17=1,020 ug/ml)(p&lt;0.05). Interestingly, the up-regulation of the activation markers CD25 and CD30 in HuT, and IFNγ production predicted lethal GvHD in β 2M null mice. In summary, we developed a xenogeneic model of lethal GvHD where naive or ex vivo Act HuT injected ro in sublethaly irradiated β 2M not only engraft, expand in vivo, but also infiltrate and damage different mouse target organs. HuT are allo-activated against mouse antigens and damage the target tissues, sharing the major characteristics of human GvHD and causing the death of mice. This model will allow us to study the effects of specific ex vivo T cell manipulation including transduction, selection, expansion, and the depletion or addition of various T cells and other cellular subsets on the outcome of GvHD, to determine improved therapeutic interventions.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1898-1898
Author(s):  
Kelley M.K. Haarberg ◽  
Crystina Bronk ◽  
Dapeng Wang ◽  
Amer Beg ◽  
Xue-Zhong Yu

Abstract Abstract 1898 Protein kinase C theta (PKCθ), a T cell signaling molecule, has been implicated as a therapeutic target for several autoimmune diseases as well as graft-versus-host disease (GVHD). PKCθ plays a vital role in stabilization of the immunologic synapse between T effector cells and antigen presenting cells (APC), but has been shown to be excluded from the immunologic synapse in T regulatory cells (T reg). PKCθ inhibition reduces the alloreactivity of donor T cells responsible for induction of GVHD while preserving graft-versus-leukemia (GVL) responses. The roles of PKCθ and the potential compensatory alpha isoform (PKCα) are not clearly defined with regard to alloresponses or T cell mediated responses in GVHD. In this context, we measured PKCθ and PKCα/θ gene deficient T cell activation upon TCR-ligation in vitro using [3H]-TdR incorporation and CSFE labeling assays. T cells from PKCθ and PKCα/θ gene deficient donor mice were utilized in vivo in a pre-clinical allogenic murine model of myeloablative bone marrow transplantation (BMT). The development of GVHD was monitored in recipient mice with or without injection of A20-luciferase cells to observe the progression of GVL in vivo. Combined blockade of PKCα and PKCθ causes a significant decrease in T cell proliferation compared to blocking PKCθ alone in vitro. Deficiency in PKCα and PKCθ had no effect on immune reconstitution following irradiation and BMT in vivo. Even with a high transplant load of 5×106 CD4+ and CD8+ T cells, PKCα/θ deficient (PKCα/θ−/−) T cells failed to induce acute GVHD. Our data suggest that the ability of double deficient T cells to induce GVHD was further reduced than PKCθ-deficient T cells. Additionally, a greater number and percentage of B220+ B cells and FoxP3+ T regs were isolated from the spleens of PKCα/θ−/− T cell recipient mice 120 after BMT than were isolated from wild type (WT) or PKCθ−/− T cell recipients. Fewer CD4+ or CD8+ T effector cells were isolated from the spleens of PKCα/θ−/− T cell recipient mice 120 after BMT than were isolated from wild type or PKCθ−/− T cell recipients. Importantly, the activity of B cells isolated from PKCα/θ−/− T cell recipient mice 120 after BMT was greater on a per cell basis, while the activity of T effector cells isolated from these mice was greatly reduced compared to WT or PKCθ−/− T cell recipients. While not absent, GVL was reduced in PKCα/θ−/− T cell recipient mice when compared to WT or PKCθ−/− T cell recipients. This work demonstrates the requirement of PKCα and θ for optimal activation and function of T cells in vitro. These experiments highlight a potential compensatory role for PKCα in the absence of PKCθ in T cell signaling and activation. Combined deficiency of PKCα and θ prevents induction of acute GVHD while improving the maintenance of splenic cellularity in PKCα/θ T cell recipient mice. Additionally, PKCα/θ dual deficient T cell transplant shifts the splenic balance toward a greater number and percentage of T reg and B cells and away from T effector cells following BMT. The reduced and sub-optimally active T effector cells isolated from PKCα/θ−/− T cell recipient mice in combination with reduced GVL stresses the importance of PKCα and θ molecules and their roles in T cell activity in the context of both GVHD and GVL. Dual deficiency of PKCα/θ is associated with a decline of T effector function that is optimal for the amelioration of GVHD, but is perhaps too reduced to substantially maintain effective GVL. Modulation of PKCα and θ signaling presents a valid avenue of investigation as a therapeutic option for GVHD. Disclosures: No relevant conflicts of interest to declare.


2003 ◽  
Vol 198 (2) ◽  
pp. 235-247 ◽  
Author(s):  
Sayuri Yamazaki ◽  
Tomonori Iyoda ◽  
Kristin Tarbell ◽  
Kara Olson ◽  
Klara Velinzon ◽  
...  

An important pathway for immune tolerance is provided by thymic-derived CD25+ CD4+ T cells that suppress other CD25− autoimmune disease–inducing T cells. The antigen-presenting cell (APC) requirements for the control of CD25+ CD4+ suppressor T cells remain to be identified, hampering their study in experimental and clinical situations. CD25+ CD4+ T cells are classically anergic, unable to proliferate in response to mitogenic antibodies to the T cell receptor complex. We now find that CD25+ CD4+ T cells can proliferate in the absence of added cytokines in culture and in vivo when stimulated by antigen-loaded dendritic cells (DCs), especially mature DCs. With high doses of DCs in culture, CD25+ CD4+ and CD25− CD4+ populations initially proliferate to a comparable extent. With current methods, one third of the antigen-reactive T cell receptor transgenic T cells enter into cycle for an average of three divisions in 3 d. The expansion of CD25+ CD4+ T cells stops by day 5, in the absence or presence of exogenous interleukin (IL)-2, whereas CD25− CD4+ T cells continue to grow. CD25+ CD4+ T cell growth requires DC–T cell contact and is partially dependent upon the production of small amounts of IL-2 by the T cells and B7 costimulation by the DCs. After antigen-specific expansion, the CD25+ CD4+ T cells retain their known surface features and actively suppress CD25− CD4+ T cell proliferation to splenic APCs. DCs also can expand CD25+ CD4+ T cells in the absence of specific antigen but in the presence of exogenous IL-2. In vivo, both steady state and mature antigen-processing DCs induce proliferation of adoptively transferred CD25+ CD4+ T cells. The capacity to expand CD25+ CD4+ T cells provides DCs with an additional mechanism to regulate autoimmunity and other immune responses.


2019 ◽  
Author(s):  
Sánchez-Villanueva José Antonio ◽  
Rodríguez-Jorge Otoniel ◽  
Ramírez-Pliego Oscar ◽  
Rosas Salgado Gabriela ◽  
Abou-Jaoudé Wassim ◽  
...  

AbstractA low response of neonatal T cells to infections contributes to a high incidence of morbidity and mortality of neonates. Here we evaluated the impact of the cytoplasmic and mitochondrial levels of Reactive Oxygen Species (ROS) of adult and neonatal CD8+T cells on their activation potential. We further constructed a logical model to decipher the interplay of metabolism and ROS on T cell signaling. Our model captures the interplay between antigen recognition, ROS and metabolic status in T cell responses. This model displays alternative stable states corresponding to different cell fates, i.e. quiescent, activated and anergic states, depending on ROS status. Stochastic simulations with this model further indicate that differences in ROS status at the cell population level tentatively explain the lower activation rate of neonatal compared to adult CD8+T cells upon TCR engagement.


Sign in / Sign up

Export Citation Format

Share Document