scholarly journals Exploring the Pathogenesis of Psoriasis Complicated With Atherosclerosis via Microarray Data Analysis

2021 ◽  
Vol 12 ◽  
Author(s):  
Wenxing Su ◽  
Ying Zhao ◽  
Yuqian Wei ◽  
Xiaoyan Zhang ◽  
Jiang Ji ◽  
...  

BackgroundAlthough more and more evidence has supported psoriasis is prone to atherosclerosis, the common mechanism of its occurrence is still not fully elucidated. The purpose of this study is to further explore the molecular mechanism of the occurrence of this complication.MethodsThe gene expression profiles of psoriasis (GSE30999) and atherosclerosis (GSE28829) were downloaded from the Gene Expression Omnibus (GEO) database. After identifying the common differentially expressed genes (DEGs) of psoriasis and atherosclerosis, three kinds of analyses were performed, namely functional annotation, protein‐protein interaction (PPI) network and module construction, and hub gene identification and co-expression analysis.ResultsA total of 94 common DEGs (24 downregulated genes and 70 upregulated genes) was selected for subsequent analyses. Functional analysis emphasizes the important role of chemokines and cytokines in these two diseases. In addition, lipopolysaccharide-mediated signaling pathway is closely related to both. Finally, 16 important hub genes were identified using cytoHubba, including LYN, CSF2RB, IL1RN, RAC2, CCL5, IRF8, C1QB, MMP9, PLEK, PTPRC, FYB, BCL2A1, LCP2, CD53, NCF2 and TLR2.ConclusionsOur study reveals the common pathogenesis of psoriasis and atherosclerosis. These common pathways and hub genes may provide new ideas for further mechanism research.

2021 ◽  
Author(s):  
Tian-Ao Xie ◽  
Hou-He Li ◽  
Zu-En Lin ◽  
Xiao-Ye Lin ◽  
Xin Meng ◽  
...  

Abstract Background: The Corona Virus Disease 2019 (COVID-19) pandemic poses a serious public health threat to the survival and health of people all over the world. We analyzed related mRNA data and gene expression profiles of human cell lines infected with SARS-CoV-2 obtained from GEO (GSE148729), using bioinformatics tools. Differentially expressed genes (DEGs) of human cells infected with SARS-CoV-2 were identified.Method: The GSE148729 datasets were downloaded from the Gene Expression Omnibus (GEO) database. To explore the Biological significance of DEGs, Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of the DEGs was performed. Protein-protein interaction (PPI) networks of the DEGs were constructed by using the STRING database. The hub genes were selected using the Cytoscape Software, and a t-test was performed to validate the hub genes.Result: A total of 1241 DEGs were screened, including 1049 up-regulated genes and 192 down-regulated genes. Besides, 10 hub genes were obtained from the PPI network, among which the expression level of CXCL2, Etv7, and HIST1H2BG was found to be statistically significant.Conclusion: In conclusion, bioinformatics analysis reveals genes and cellular pathways that are significantly altered in SARS-CoV-2 infected cells. This is conducive to further guide the clinical study of SARS-CoV-2 and provides new perspectives for vaccine development.


2018 ◽  
Vol 34 ◽  
pp. 121-133 ◽  
Author(s):  
Youyu Sheng ◽  
Yuxin Yang ◽  
Yun Wu ◽  
Qinping Yang

Sarcoidosis is a disease involving the growth of abnormal inflammatory granulomas and affecting multisystems. It has an unknown etiology. The lung and the skin are the most commonly involved organs. Although large amounts of research have focused on the pathogenesis of sarcoidosis, little is known about the link between cutaneous sarcoidosis and pulmonary sarcoidosis. Moreover, the gene expression profiles provide a novel way to find diagnostic or prognostic biomarkers. Therefore, the aim of this study was to analyze the differentially expressed genes (DEGs) in pulmonary sarcoidosis and cutaneous sarcoidosis patients and to compare them to healthy individuals. DEGs and their biological functions are dynamically dysregulated, and several common disease-related genes and mutual disease progression-related genes were identified which linked pulmonary sarcoidosis and cutaneous sarcoidosis together. The biological functional pathways regulated by these DEGs may allow to define the common mechanism shared by different type of sarcoidosis, providing novel insight into the common pathogenesis of sarcoidosis and opening the way to the development of new therapeutic strategies.


2021 ◽  
Author(s):  
Hongpeng Fang ◽  
Zhansen Huang ◽  
Xianzi Zeng ◽  
Jiaming Wan ◽  
Jieying Wu ◽  
...  

Abstract Background As a common malignant cancer of the urinary system, the precise molecular mechanisms of bladder cancer remain to be illuminated. The purpose of this study was to identify core genes with prognostic value as potential oncogenes for the diagnosis, prognosis or novel therapeutic targets of bladder cancer. Methods The gene expression profiles GSE3167 and GSE7476 were available from the Gene Expression Omnibus (GEO) database. Next, PPI network was built to filter the hub gene through the STRING database and Cytoscape software and GEPIA and Kaplan-Meier plotter were implemented. Frequency and type of hub genes and sub groups analysis were performed in cBioportal and ULCAN database. Finally,We used RT-qPCR to confirm our results. Results Totally, 251 DEGs were excavated from two datasets in our study. We only founded high expression of SMC4, TYMS, CCNB1, CKS1B, NUSAP1 and KPNA2 was associated with worse outcomes in bladder cancer patients and no matter from the type of mutation or at the transcriptional level of hub genes, the tumor showed a high form of expression. However, only the expression of SMC4,CCNB1and CKS1B remained changed between the cancer and the normal samples in our results of RT-qPCR. Conclusion In conclusion,These findings indicate that the SMC4,CCNB1 and CKS1B may serve as critical biomarkers in the development and poor prognosis.


2022 ◽  
Vol 2022 ◽  
pp. 1-17
Author(s):  
Md. Rakibul Islam ◽  
Lway Faisal Abdulrazak ◽  
Mohammad Khursheed Alam ◽  
Bikash Kumar Paul ◽  
Kawsar Ahmed ◽  
...  

Background. Medulloblastoma (MB) is the most occurring brain cancer that mostly happens in childhood age. This cancer starts in the cerebellum part of the brain. This study is designed to screen novel and significant biomarkers, which may perform as potential prognostic biomarkers and therapeutic targets in MB. Methods. A total of 103 MB-related samples from three gene expression profiles of GSE22139, GSE37418, and GSE86574 were downloaded from the Gene Expression Omnibus (GEO). Applying the limma package, all three datasets were analyzed, and 1065 mutual DEGs were identified including 408 overexpressed and 657 underexpressed with the minimum cut-off criteria of ∣ log   fold   change ∣ > 1 and P < 0.05 . The Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and WikiPathways enrichment analyses were executed to discover the internal functions of the mutual DEGs. The outcomes of enrichment analysis showed that the common DEGs were significantly connected with MB progression and development. The Search Tool for Retrieval of Interacting Genes (STRING) database was used to construct the interaction network, and the network was displayed using the Cytoscape tool and applying connectivity and stress value methods of cytoHubba plugin 35 hub genes were identified from the whole network. Results. Four key clusters were identified using the PEWCC 1.0 method. Additionally, the survival analysis of hub genes was brought out based on clinical information of 612 MB patients. This bioinformatics analysis may help to define the pathogenesis and originate new treatments for MB.


2020 ◽  
Author(s):  
Huatian Luo ◽  
Da-qiu Chen ◽  
Jing-jing Pan ◽  
Zhang-wei Wu ◽  
Can Yang ◽  
...  

Abstract Background: Pancreatic cancer has many pathologic types, among which pancreatic ductal adenocarcinoma (PDAC) is the most common one. Bioinformatics has become a very common tool for the selection of potentially pathogenic genes. Methods: Three data sets containing the gene expression profiles of PDAC were downloaded from the gene expression omnibus (GEO) database. The limma package of R language was utilized to explore the differentially expressed genes (DEGs). To analyze functions and signaling pathways, the Database Visualization and Integrated Discovery (DAVID) was used. To visualize the protein-protein interaction (PPI) of the DEGs ,Cytoscape was performed under the utilization of Search Tool for the Retrieval of Interacting Genes (STRING). With the usage of the plug-in cytoHubba in cytoscape software, the hub genes were found out. To verify the expression levels of hub genes, Gene Expression Profiling Interactive Analysis (GEPIA) was performed. Last but not least, UALCAN analysis online tool was implemented to analyze the overall survival. Results: The 376 DEGs were highly enriched in biological processes including signal transduction, apoptotic process and several pathways, mainly associated with Protein digestion and absorption and Pancreatic secretion pathway. The expression levels of nucleolar and spindle associated protein 1 (NUSAP1) and SHC binding and spindle associated 1 (SHCBP1) were discovered highly expressed in pancreatic ductal adenocarcinoma tissues. NUSAP1 and SHCBP1 had a high correlation with prognosis. Conclusions: The findings of this bioinformatics analysis indicate that NUSAP1 and SHCBP1 may be key factors in the prognosis and treatment of pancreatic cancer.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lu Gao ◽  
Yu Zhao ◽  
Xuelei Ma ◽  
Ling Zhang

Abstract Background Competitive endogenous RNA (ceRNA) networks have revealed a new mechanism of interaction between RNAs, and play crucial roles in multiple biological processes and development of neoplasms. They might serve as diagnostic and prognosis markers as well as therapeutic targets. Methods In this work, we identified differentially expressed mRNAs (DEGs), lncRNAs (DELs) and miRNAs (DEMs) in sarcomas by comparing the gene expression profiles between sarcoma and normal muscle samples in Gene Expression Omnibus (GEO) datasets. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were applied to investigate the primary functions of the overlapped DEGs. Then, lncRNA-miRNA and miRNA-mRNA interactions were predicted, and the ceRNA regulatory network was constructed using Cytoscape software. In addition, the protein–protein interaction (PPI) network and survival analysis were performed. Results A total of 1296 DEGs were identified in sarcoma samples by combining the GO and KEGG enrichment analyses, 338 DELs were discovered after the probes were reannotated, and 36 DEMs were ascertained through intersecting two different expression miRNAs sets. Further, through target gene prediction, a lncRNA–miRNA–mRNA ceRNA network that contained 113 mRNAs, 69 lncRNAs and 29 miRNAs was constructed. The PPI network identified the six most significant hub proteins. Survival analysis revealed that seven mRNAs, four miRNAs and one lncRNA were associated with overall survival of sarcoma patients. Conclusions Overall, we constructed a ceRNA network in sarcomas, which might provide insights for further research on the molecular mechanism and potential prognosis biomarkers.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shilong You ◽  
Jiaqi Xu ◽  
Boquan Wu ◽  
Shaojun Wu ◽  
Ying Zhang ◽  
...  

Hypertensive nephropathy (HN), mainly caused by chronic hypertension, is one of the major causes of end-stage renal disease. However, the pathogenesis of HN remains unclarified, and there is an urgent need for improved treatments. Gene expression profiles for HN and normal tissue were obtained from the Gene Expression Omnibus database. A total of 229 differentially co-expressed genes were identified by weighted gene co-expression network analysis and differential gene expression analysis. These genes were used to construct protein–protein interaction networks to search for hub genes. Following validation in an independent external dataset and in a clinical database, POLR2I, one of the hub genes, was identified as a key gene related to the pathogenesis of HN. The expression level of POLR2I is upregulated in HN, and the up-regulation of POLR2I is positively correlated with renal function in HN. Finally, we verified the protein levels of POLR2I in vivo to confirm the accuracy of our analysis. In conclusion, our study identified POLR2I as a key gene related to the pathogenesis of HN, providing new insights into the molecular mechanisms underlying HN.


2020 ◽  
Author(s):  
Xiao-Qing Lu ◽  
Jia-qian Zhang ◽  
Jun Qiao ◽  
Sheng-Xiao Zhang ◽  
Meng-Ting Qiu ◽  
...  

Abstract Background: Gastric cancer (GC) is one of the most common solid malignant tumors worldwide with a high-recurrence-rate. Identifying the molecular signatures and specific biomarkers of GC might provide novel clues for GC prognosis and targeted therapy.Methods: Gene expression profiles were obtained from the ArrayExpress and Gene Expression Omnibus database. Differentially expressed genes (DEGs) were picked out by R software. The hub genes were screened by cytoHubba plugin. Their prognostic values were assessed by Kaplan–Meier survival analyses and the gene expression profiling interactive analysis (GEPIA). Finally, qRT-PCR in GC tissue samples was established to validate these DEGs. Results: Total of 295 DEGs were identified between GC and their corresponding normal adjacent tissue samples in E-MTAB-1440, GSE79973, GSE19826, GSE13911, GSE27342, GSE33335 and GSE56807 datasets, including 117 up-regulated and 178 down-regulated genes. Among them, 7 vital upregulated genes (HMMR, SPP1, FN1, CCNB1, CXCL8, MAD2L1 and CCNA2) were selected. Most of them had a significantly worse prognosis except SPP1. Using qRT-PCR, we validated that their transcriptions in our GC tumor tissue were upregulated except SPP1 and FN1, which correlated with tumor relapse and predicts poorer prognosis in GC patients.Discussion: We have identified 5 upregulated DEGs (HMMR, CCNB1, CXCL8, MAD2L1, and CCNA2) in GC patients with poor prognosis using integrated bioinformatical methods, which could be potential biomarkers and therapeutic targets for GC treatment.


Dose-Response ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 155932582090753
Author(s):  
Tianlong Wu ◽  
Honghai Cao ◽  
Lei Liu ◽  
Kan Peng

Background: The risk of malignant transformation of enchondromas (EC) toward central chondrosarcoma is increased up to 35%, while the exact etiology of EC is unknown. The purpose of this research was to authenticate gene signatures during EC and reveal their potential mechanisms in occurrence and development of EC. Methods: The gene expression profiles was acquired from Gene Expression Omnibus database (no. GSE22855). The gene ontology (GO), protein–protein interaction (PPI) network and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were utilized to identify differentially expressed genes (DEGs). Results: Finally, 242 DEGs were appraisal, containing 200 overregulated genes and 42 downregulated genes. The outcomes of GO analysis indicated that upregulated DEGs were mainly enriched in several biological processes containing response to hypoxia, calcium ion, and negative regulation extrinsic apoptotic signaling pathway. Furthermore, the upregulated DEGs were enriched in extracellular matrix (ECM)–receptor interaction, protein processing in endoplasmic reticulum and ribosome, which was analyzed by KEGG pathway. From the PPI network, the top 10 hub genes were identified, which were related to significant pathways containing ribosome, protein processing in endoplasmic reticulum, and ECM-receptor interaction. Conclusion: In conclusion, the present study may be helpful for understanding the diagnostic biomarkers of EC.


Sign in / Sign up

Export Citation Format

Share Document