scholarly journals Runx Transcription Factors in T Cells—What Is Beyond Thymic Development?

2021 ◽  
Vol 12 ◽  
Author(s):  
Svetlana Korinfskaya ◽  
Sreeja Parameswaran ◽  
Matthew T. Weirauch ◽  
Artem Barski

Runx proteins (also known as Runt-domain transcription factors) have been studied for a long time as key regulators of cellular differentiation. RUNX2 has been described as essential for osteogenesis, whereas RUNX1 and RUNX3 are known to control blood cell development during different stages of cell lineage specification. However, recent studies show evidence of complex relationships between RUNX proteins, chromatin-modifying machinery, the cytoskeleton and different transcription factors in various non-embryonic contexts, including mature T cell homeostasis, inflammation and cancer. In this review, we discuss the diversity of Runx functions in mature T helper cells, such as production of cytokines and chemokines by different CD4 T cell populations; apoptosis; and immunologic memory acquisition. We then briefly cover recent findings about the contribution of RUNX1, RUNX2 and RUNX3 to various immunologic diseases. Finally, we discuss areas that require further study to better understand the role that Runx proteins play in inflammation and immunity.

2018 ◽  
Author(s):  
Suresh K. Mendu ◽  
Michael S. Schappe ◽  
Emily K. Moser ◽  
Julia K. Krupa ◽  
Jason S. Rogers ◽  
...  

In BriefGenetic deletion of Trpm7 in T-cells or pharmacological inhibition of TRPM7 channel promotes the development of fully functional Treg cells by increasing IL-2Rα and STAT5-dependent FOXP3 expression in the developing thymocytes. The study identifies the ion channel TRPM7 as a putative drug target to increase Treg numbers in vivo and induce immunotolerance.HIGHLIGHTSIon channel TRPM7 controls Treg developmentThe deletion of Trpm7 in the T-cell lineage increases fully functional Treg cells in the peripheryTRPM7 negatively regulates Foxp3 expression by restraining IL-2-dependent STAT5 activationInhibition of TRPM7 channel by FTY720 promotes the development of functional Treg cellsSUMMARYThe thymic development of regulatory T cells (Treg), the crucial suppressors of the effector T cells (Teff), is governed by the transcription factor FOXP3. Despite the clinical significance of Treg cells, there is a dearth of druggable molecular targets capable of increasing Treg numbers in vivo. We report a surprising discovery that TRPM7 restrains Treg development by negatively regulating STAT5-dependent Foxp3 expression. The deletion of Trpm7 potentiates the thymic development of Treg cells, leads to a significantly higher frequency of functional Treg cells in the periphery and renders the mice highly resistant to T cell-dependent hepatitis. The deletion of Trpm7 or the inhibition of TRPM7 channel activity by the FDA-approved prodrug FTY720, increases IL-2 sensitivity through a feed forward positive feedback loop involving high IL-2Rα expression and STAT5 activation. Enhanced IL-2 signaling increases the expression of Foxp3 in thymocytes and promotes the development of Treg cells. Thus, TRPM7 emerges as the first ion channel that can be drugged to increase Treg numbers, revealing a novel pharmacological path toward the induction of immune tolerance.


Development ◽  
1999 ◽  
Vol 126 (14) ◽  
pp. 3131-3148 ◽  
Author(s):  
M.K. Anderson ◽  
G. Hernandez-Hoyos ◽  
R.A. Diamond ◽  
E.V. Rothenberg

Ets family transcription factors control the expression of a large number of genes in hematopoietic cells. Here we show strikingly precise differential expression of a subset of these genes marking critical, early stages of mouse lymphocyte cell-type specification. Initially, the Ets family member factor Erg was identified during an arrayed cDNA library screen for genes encoding transcription factors expressed specifically during T cell lineage commitment. Multiparameter fluorescence-activated cell sorting for over a dozen cell surface markers was used to isolate 18 distinct primary-cell populations representing discrete T cell and B cell developmental stages, pluripotent lymphoid precursors, immature NK-like cells and myeloid hematopoietic cells. These populations were monitored for mRNA expression of the Erg, Ets-1, Ets-2, Fli-1, Tel, Elf-1, GABPalpha, PU.1 and Spi-B genes. The earliest stages in T cell differentiation show particularly dynamic Ets family gene regulation, with sharp transitions in expression correlating with specification and commitment events. Ets, Spi-B and PU.1 are expressed in these stages but not by later T-lineage cells. Erg is induced during T-lineage specification and then silenced permanently, after commitment, at the beta-selection checkpoint. Spi-B is transiently upregulated during commitment and then silenced at the same stage as Erg. T-lineage commitment itself is marked by repression of PU.1, a factor that regulates B-cell and myeloid genes. These results show that the set of Ets factors mobilized during T-lineage specification and commitment is different from the set that maintains T cell gene expression during thymocyte repertoire selection and in all classes of mature T cells.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1229-1229
Author(s):  
Hiyaa Singhee Ghosh ◽  
Kang Liu ◽  
Scott Hiebert ◽  
Boris Reizis

Abstract Abstract 1229 Eto-family proteins were first discovered as translocation fusion in AML1 (Runx1), a gene most frequently disrupted in human leukemia. Of the translocations that disrupt the AML1 gene in leukemia, Eto1(MTG8)/AML1 translocation accounts for ∼15% of Acute Myeloid Leukemia (AML). The Eto-family proteins function as transcriptional co-repressors that bind to DNA-binding transcription factors to regulate their target genes. Eto2 (MTG16) is an Eto-family member implicated in secondary or therapy-related AML, although recent reports provide evidence for Eto2/MTG16 translocations in de novo AML as well. Furthermore, recent studies have highlighted a role for MTG16 in HSC self renewal and T cell lineage specification, indicating its emerging role overall in hematopoiesis. The co-repressor function of Eto for E-proteins has been described previously in the context of Eto/AML1 fusion proteins. E-proteins are a class of basic-helix-loop-helix (bHLH) transcription factors that play an important role in hematopoiesis. Among the E-protein family, the role of E2A has been extensively studied in B and T cell development. Recently, our lab discovered the specific requirement of the E-protein E2-2 in the development of Plasmacytoid Dendritic Cells (pDC). pDC are the professional interferon producing (IPC) cells of our immune system important in anti-viral, anti-tumor and auto-immunity. pDC are a subtype of the antigen-presenting classical Dendritic Cells (cDC) with distinct structural and functional properties. Recently, we demonstrated that the putative cell fate plasticity of pDC was a direct manifestation of continuous E2-2 function. Using pDC-reporter mice in which E2-2 could be inducibly deleted from mature pDC we showed that the continuous expression of E2-2 was required to prevent the conversion of pDC to cDC. Here we report our current studies that investigate the molecular players underlying the E2-2 orchestrated genetic program for pDC cell fate decision and maintenance. Analyzing the transcriptome of the transitioning pDC, we have identified MTG16 as an important player in the fine regulation of DC lineage decisions. Using knock-out and chimeric mice, progenitor studies, promoter and biochemical analyses, we demonstrate MTG16 as an important E2-2 corepressor, promoting E2-2 mediated genetic program. We report that in order to facilitate the pDC cell fate, MTG16 enables E2-2 to suppress the cDC gene expression program, by negatively regulating the E-protein inhibitor Id2. The cell-fate conversion through deletion or overexpression of lineage-deciding transcriptional regulators has been described previously for B- and T cells. Theseh studies highlight the susceptibility of blood cells to aberrant functions of crucial transcriptional regulators, potentially leading to pathologic conditions. Therefore, understanding the interrelationship between the various genetic regulators that control lineage decisions and cell-fate plasticity is cardinal to accurate diagnosis and therapy for hematopoietic pathologies. Our study provides the first evidence for a physiological role of E-protein/Eto-protein interaction in dendritic cell lineage decision. Disclosures: No relevant conflicts of interest to declare.


2009 ◽  
Vol 9 (2) ◽  
pp. 106-115 ◽  
Author(s):  
Amélie Collins ◽  
Dan R. Littman ◽  
Ichiro Taniuchi

Blood ◽  
2005 ◽  
Vol 105 (4) ◽  
pp. 1440-1447 ◽  
Author(s):  
Sophie M. Lehar ◽  
James Dooley ◽  
Andrew G. Farr ◽  
Michael J. Bevan

AbstractSignaling through the Notch pathway plays an essential role in inducing T-lineage commitment and promoting the maturation of immature thymocytes. Using an in vitro culture system, we show that 2 different classes of Notch ligands, Jagged1 or Delta1, transmit distinct signals to T-cell progenitors. OP9 stromal cells expressing either Jagged1 or Delta1 inhibit the differentiation of DN1 thymocytes into the B-cell lineage, but only the Delta1-expressing stromal cells promote the proliferation and maturation of T-cell progenitors through the early double-negative (DN) stages of thymocyte development. Whereas the majority of bone marrow–derived stem cells do not respond to Jagged1 signals, T-cell progenitors respond to Jagged1 signals during a brief window of their development between the DN1 and DN3 stages of thymic development. During these stages, Jagged1 signals can influence the differentiation of immature thymocytes along the natural killer (NK) and γδ T-cell lineages.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1074
Author(s):  
Veronica Della Chiara ◽  
Lucia Daxinger ◽  
Frank J. T. Staal

Hematopoietic multipotent progenitors seed the thymus and then follow consecutive developmental stages until the formation of mature T cells. During this process, phenotypic changes of T cells entail stage-specific transcriptional programs that underlie the dynamic progression towards mature lymphocytes. Lineage-specific transcription factors are key drivers of T cell specification and act in conjunction with epigenetic regulators that have also been elucidated as crucial players in the establishment of regulatory networks necessary for proper T cell development. In this review, we summarize the activity of transcription factors and epigenetic regulators that together orchestrate the intricacies of early T cell development with a focus on regulation of T cell lineage commitment.


2018 ◽  
Author(s):  
Yujie Ye ◽  
Jordan Bailey ◽  
Chunhe Li ◽  
Tian Hong

AbstractMultistep cell fate transitions with stepwise changes of transcriptional profiles are common to many developmental, regenerative and pathological processes. The multiple intermediate cell lineage states can serve as differentiation checkpoints or branching points for channeling cells to more than one lineages. However, mechanisms underlying these transitions remain elusive. Here, we explored gene regulatory circuits that can generate multiple intermediate cellular states with stepwise modulations of transcription factors. With unbiased searching in the network topology space, we found a motif family containing a large set of networks can give rise to four attractors with the stepwise regulations of transcription factors, which limit the reversibility of three consecutive steps of the lineage transition. We found that there is an enrichment of these motifs in a transcriptional network controlling the early T cell development, and a mathematical model based on this network recapitulates multistep transitions in the early T cell lineage commitment. By calculating the energy landscape and minimum action paths for the T cell model, we quantified the stochastic dynamics of the critical factors in response to the differentiation signal with fluctuations. These results are in good agreement with experimental observations and they suggest the stable characteristics of the intermediate states in the T cell differentiation. These dynamical features may help to direct the cells to correct lineages during development. Our findings provide general design principles for multistep cell linage transitions and new insights into the early T cell development. The network motifs containing a large family of topologies can be useful for analyzing diverse biological systems with multistep transitions.Author summaryThe functions of cells are dynamically controlled in many biological processes including development, regeneration and disease progression. Cell fate transition, or the switch of cellular functions, often involves multiple steps. The intermediate stages of the transition provide the biological systems with the opportunities to regulate the transitions in a precise manner. These transitions are controlled by key regulatory genes of which the expression shows stepwise patterns, but how the interactions of these genes can determine the multistep processes were unclear. Here, we present a comprehensive analysis on the design principles of gene circuits that govern multistep cell fate transition. We found a large network family with common structural features that can generate systems with the ability to control three consecutive steps of the transition. We found that this type of networks is enriched in a gene circuit controlling the development of T lymphocyte, a crucial type of immune cells. We performed mathematical modeling using this gene circuit and we recapitulated the stepwise and irreversible loss of stem cell properties of the developing T lymphocytes. Our findings can be useful to analyze a wide range of gene regulatory networks controlling multistep cell fate transitions.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3710-3710 ◽  
Author(s):  
Peter Brossart ◽  
Philipp Kotthoff

Abstract Treatment of patients with glucocorticoids can result in an increased risk of infection with pathogens such as fungi. Dectin-1 is a member of the C-type lectin receptor superfamily and was shown to be one of the major receptors for fungal beta-glucans. Activation of Dectin-1 increases the production of cytokines and chemokines and T-cell stimulatory capacity of DC and mediates resolution of fungal infections. Here we show that antigen-presenting cells generated in the presence of dexamethasone (Dex-DC) have a reduced capacity to stimulate T-cell proliferation and decreased expression of costimulatory molecules, that can not be enhanced upon stimulation with Dectin-1 ligands. Stimulation of Dex-DC with beta-glucans induced a strong upregulation of Syk phosphorylation and increased secretion of IL-10, while the production of IL-12, IL-23 and TNF-alpha was reduced. Downstream of Syk stimulation of Dectin-1 on Dex-DC resulted in phosphorylation of STAT3 and reduced nuclear localization of transcription factors involved in DC activation and function. Defects in the Dectin-1 molecule can result at least in increased mucosal infections with fungi in affected individuals. In our study we analyzed Dectin-1 expression and signaling in Dex-DC and compared it to immature dendritic cells (iDC). First, we analyzed whether DC that were generated in the presence of dexamethason (Dex-DC) express Dectin-1 on their surface. Dectin-1 was highly expressed on Dex-DC cells compared to iDC. Stimulation of iDC with zymosan or curdlan increased the expression of the maturation markers CD80, CD83 and CD86. In contrast, Dex-DC show a reduced upregulation of these markers. CD11b was expressed at lower levels on Dex-DC as compared to iDC and was downregulated on both subsets after stimulation with beta-glucans. CD11b is part of CR3, which was found to be another beta-glucan and collaborating receptor of Dectin-1. As exprected, dexamethasone-treatment of DC results in reduced capacity to stimulate the proliferation of allogeneic T-cells in a MLR- assay, that could not be increased by stimulation with Dectin-1 ligand curdlan or the TLR-4 ligand LPS. DC generated in the presence of dexamethasone secreted lower amounts of TNF-alpha, IL-23 and IL-12p70 upon stimulation with Curdlan. Interestingly, secretion of IL-10 was increased by Dex-DC. Secretion of cytokines by Dex-DC was Syk-dependent as shown by incubation of cells with the syk-inhibitor R406 prior to Dectin-1 stimulation with curdlan. Incubation of Dex-DC with beta-glucans resulted in increased phosphorylation of Syk as compared to iDC and strongly increased generation of superoxide-anions. Downstream of Syk, we observed a highly increased activation of STAT3 signaling while the induction of STAT3 signaling was absent in iDC. STAT3 mediates immune inhibitory effects on DC function by promoting expression and secretion of anti-inflammatory cytokines like IL-10 and subsequent inhibition of Th1- and Th17-mediated response. In nuclei of Dex-DC transcription factors which are important for dendritic cell activation and cytokine secretion were not detected. In contrast, p50 was found to accumulate in nuclei of Dex-DC which might contribute to IL-10 expression. The phosphatase SHP-1, which is thought to regulate Syk-activitiy, was found to be expressed at lower levels in Dex-DC. CD45, another Syk-regulating phosphatase was expressed at similar levels as compared to iDC. Dexamethasone inhibited the function and differentiation of monocyte derived DC and abrogated the immunological effects induced by interaction of fungal beta-glucans with Dectin-1. It inhibited the secretion of cytokines and chemokines by antigen-presenting cells such as TNF-alpha, IL-12 and IL-23, which are important for T-cell activation and reduced the upregulation of costimulatory molecules on the cell surface upon interaction with beta-glucans. This is probably due to a diminished nuclear expression of several transcription factors involved in DC differentiation and function. Furthermore, dexamethasone increased the expression of Dectin-1 and Syk-phosphorylation but redirected downstream signaling towards STAT-3 that results in production of IL-10, that further contributes to the inhibition of anti-fungal immune responses. Finally the phosphatase SHP-1 was expressed at lower levels in Dex-DC and might further be affected by Dectin-1 mediated oxidative stress. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document