scholarly journals Targeting ion channel TRPM7 promotes thymic development of Regulatory T cells by increasing IL-2-dependent STAT5 activation

2018 ◽  
Author(s):  
Suresh K. Mendu ◽  
Michael S. Schappe ◽  
Emily K. Moser ◽  
Julia K. Krupa ◽  
Jason S. Rogers ◽  
...  

In BriefGenetic deletion of Trpm7 in T-cells or pharmacological inhibition of TRPM7 channel promotes the development of fully functional Treg cells by increasing IL-2Rα and STAT5-dependent FOXP3 expression in the developing thymocytes. The study identifies the ion channel TRPM7 as a putative drug target to increase Treg numbers in vivo and induce immunotolerance.HIGHLIGHTSIon channel TRPM7 controls Treg developmentThe deletion of Trpm7 in the T-cell lineage increases fully functional Treg cells in the peripheryTRPM7 negatively regulates Foxp3 expression by restraining IL-2-dependent STAT5 activationInhibition of TRPM7 channel by FTY720 promotes the development of functional Treg cellsSUMMARYThe thymic development of regulatory T cells (Treg), the crucial suppressors of the effector T cells (Teff), is governed by the transcription factor FOXP3. Despite the clinical significance of Treg cells, there is a dearth of druggable molecular targets capable of increasing Treg numbers in vivo. We report a surprising discovery that TRPM7 restrains Treg development by negatively regulating STAT5-dependent Foxp3 expression. The deletion of Trpm7 potentiates the thymic development of Treg cells, leads to a significantly higher frequency of functional Treg cells in the periphery and renders the mice highly resistant to T cell-dependent hepatitis. The deletion of Trpm7 or the inhibition of TRPM7 channel activity by the FDA-approved prodrug FTY720, increases IL-2 sensitivity through a feed forward positive feedback loop involving high IL-2Rα expression and STAT5 activation. Enhanced IL-2 signaling increases the expression of Foxp3 in thymocytes and promotes the development of Treg cells. Thus, TRPM7 emerges as the first ion channel that can be drugged to increase Treg numbers, revealing a novel pharmacological path toward the induction of immune tolerance.

2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A3.2-A4
Author(s):  
J Grün ◽  
I Piseddu ◽  
C Perleberg ◽  
N Röhrle ◽  
S Endres ◽  
...  

BackgroundUnmethylated CpG-DNA is a potent ligand for the endosomal Toll-like-receptor-9, important for the immune activation to pathogen-associated molecules.1 CpG and other TLR-ligands show effective immunotherapeutic capacities in cancer treatment by inducing an antitumorigenic immunity.2 They are able to reduce tumor progression by reduction of intratumoral secretion of the immunoregulating chemokine CCL223 and subsequent recruitment of immunosuppressive regulatory T cells (Treg), which express CCR4 the only so far known receptor for CCL22.4 Our recent work has shown that CCL22 secretion by dendritic cells (DC) in the lymph node, mediates tolerance by inducing DC-Treg contacts.5 Indeed, in the absence of CCL22, immune responses to vaccination were stronger and resulted in tumor rejection.6 Therefore, we are aiming to investigate the effects of TLR-ligands on systemic CCL22 levels, elucidating all involved mechanisms to identify new targets for cancer immunotherapy.Materials and MethodsT, B and CD11c+ DCs of wildtype (wt) and RAG1-/- mice were isolated from splenocytes by magnetic-activated cell sorting for in vitro assays. Different co-cultures were incubated with CpG and GM-CSF, known as an CCL22 inducer.5 For in vivo experiments, wt mice were treated with CpG, R484 or poly(I:C) alone and in combination with GM-CSF. CCL22-levels in a number of organs were analyzed.ResultsAnalyzing the different immune cell compartments in vitro, we found that DCs in whole splenocytes secrete CCL22 during culture while DC cultured alone showed no CCL22 secretion. When treated with CpG, CCL22-levels were reduced in splenocytes, while it was induced in DC culture alone. The same results were seen when RAG splenocytes, that lack functional B and T cells, were cultured with CpG. CpG treated B cells were able to suppress CCL22 secretion by DC unlike T cells alone. Co-cultures of T and B cells treated with CpG, however, induced the strongest CCL22 suppression in DC. In vivo, we could show that all TLR ligands tested reduced CCL22 in a number of organs significantly. Furthermore, CpG showed the strongest suppression of CCL22 even in the presence of the CCL22 inducer GM-CSF.5ConclusionsWe could show that B cells with T cells mediate CCL22 suppression by TLR ligands. The fact that CpG was able to reduce CCL22 levels even in the presence of the inducer GM-CSF demonstrates the potent CCL22 suppressive capacity of TLR ligands.ReferencesO’Neill LA, et al. The history of toll-like receptors – redefining innate immunity. Nat Rev Immunol 2013;13(6):453–60.Rothenfusser S, et al. Recent advances in immunostimulatory CpG oligonucleotides. Curr Opin Mol Ther 2003;5(2):98–106.Wang S, et al. Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proc Natl Acad Sci U S A 2016;113(46): E7240–E7249.Rapp M, et al. CCL22 controls immunity by promoting regulatory T cell communication with dendritic cells in lymph nodes. J Exp Med 2019;216(5):1170–1181.Piseddu I, et al. Constitutive expression of CCL22 is mediated by T cell-derived GM-CSF. J Immunol 2020;205(8):2056–2065.Anz D, et al. Suppression of intratumoral CCL22 by type i interferon inhibits migration of regulatory T cells and blocks cancer progression. Cancer Res 2015;75(21):4483–93.Disclosure InformationJ. Grün: None. I. Piseddu: None. C. Perleberg: None. N. Röhrle: None. S. Endres: None. D. Anz: None.


Blood ◽  
2011 ◽  
Vol 117 (8) ◽  
pp. 2494-2505 ◽  
Author(s):  
Yiming Huang ◽  
Larry D. Bozulic ◽  
Thomas Miller ◽  
Hong Xu ◽  
Lala-Rukh Hussain ◽  
...  

Abstract CD8-positive/T-cell receptor–negative (CD8+/TCR−) graft facilitating cells (FCs) are a novel cell population in bone marrow that potently enhance engraftment of hemopoietic stem cells (HSCs). Previously, we showed that the CD11c+/B220+/CD11b− plasmacytoid-precursor dendritic cell (p-preDC) FC subpopulation plays a critical but nonredundant role in facilitation. In the present study, we investigated the mechanism of FC function. We report that FCs induce antigen-specific CD4+/CD25+/FoxP3+ regulatory T cells (Tregs) in vivo. The majority of chimeric Tregs were recipient derived. Chimeric Tregs harvested at ≥ 4 weeks after transplantation significantly enhanced engraftment of donor- and recipient-derived HSCs, but not third-party HSCs, in conditioned secondary recipients, demonstrating antigen specificity. Although Tregs were present 2 and 3 weeks after transplantation, they did not enhance engraftment. In contrast, week 5 and greater Tregs potently enhanced engraftment. The function of chimeric Tregs was directly correlated with the development of FoxP3 expression. Chimeric Tregs also induced significantly stronger suppression of T-cell proliferation to donor antigen in vitro. Removal of p-preDC FCs resulted in impaired engraftment of allogeneic HSCs and failure to produce chimeric Tregs, suggesting that the CD8α+ p-preDC subpopulation is critical in the mechanism of facilitation. These data suggest that FCs induce the production of antigen-specific Tregs in vivo, which potently enhance engraftment of allogeneic HSCs. FCs hold clinical potential because of their ability to remain tolerogenic in vivo.


2013 ◽  
Vol 210 (2) ◽  
pp. 257-268 ◽  
Author(s):  
Wing-hong Kwan ◽  
William van der Touw ◽  
Estela Paz-Artal ◽  
Ming O. Li ◽  
Peter S. Heeger

Thymus-derived (natural) CD4+ FoxP3+ regulatory T cells (nT reg cells) are required for immune homeostasis and self-tolerance, but must be stringently controlled to permit expansion of protective immunity. Previous findings linking signals transmitted through T cell–expressed C5a receptor (C5aR) and C3a receptor (C3aR) to activation, differentiation, and expansion of conventional CD4+CD25− T cells (T conv cells), raised the possibility that C3aR/C5aR signaling on nT reg cells could physiologically modulate nT reg cell function and thereby further impact the induced strength of T cell immune responses. In this study, we demonstrate that nT reg cells express C3aR and C5aR, and that signaling through these receptors inhibits nT reg cell function. Genetic and pharmacological blockade of C3aR/C5aR signal transduction in nT reg cells augments in vitro and in vivo suppression, abrogates autoimmune colitis, and prolongs allogeneic skin graft survival. Mechanisms involve C3a/C5a-induced phosphorylation of AKT and, as a consequence, phosphorylation of the transcription factor Foxo1, which results in lowered nT reg cell Foxp3 expression. The documentation that C3a/C3aR and C5a/C5aR modulate nT reg cell function via controlling Foxp3 expression suggests targeting this pathway could be exploited to manipulate pathogenic or protective T cell responses.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 731-731
Author(s):  
Amy Beres ◽  
Richard Komorowski ◽  
William R. Drobyski

Abstract Abstract 731 Graft versus host disease (GVHD) is a proinflammatory T cell-mediated syndrome that is the major complication of allogeneic bone marrow transplantation (BMT). During the course of GVHD, there is a progressive loss of regulatory T cells (Tregs), leading to an imbalance between the effector and regulatory arms of the immune system. Tregs have been subdivided into two distinct subsets, termed natural and induced, which have overlapping yet unique characteristics. While the role of natural regulatory T cells (nTregs) in GVHD biology has been extensively examined, the role of induced regulatory T cells (iTregs) remains largely unknown. An attractive aspect of the latter cell population is that they can be differentiated in vitro from conventional T cells and expanded in large numbers making them a potential source for regulatory T cell therapy in vivo. To determine whether in vitro-expanded iTregs were able to suppress alloreactive donor T cell responses and to compare the efficacy of these cells relative to nTregs, studies were performed using an MHC-incompatible murine BMT model (B6[H−2b]−Balb/c[H−2d]). In initial studies, purified CD4+ Foxp3EGFP– T cells obtained from B6 Foxp3EGFP reporter mice were cultured with anti-CD3 and anti-CD28 antibodies in the presence of IL-2 and TGF-b. After three days in culture, approximately 60–70% of cells were Foxp3+, expressed GITR, CD25, and CD103, and were equally suppressive to nTregs in mixed lymphocyte cultures. To determine if iTregs were suppressive in vivo, lethally irradiated Balb/c mice were transplanted with either B6 BM alone, B6 BM and spleen cells, or B6 BM/spleen cells and in vitro-expanded iTregs. In contrast to in vitro results, adoptive transfer of iTregs failed to protect mice from lethal GVHD even when administered at high Treg: effector T cell ratios (5:1) and were much less effective than equivalent doses of nTregs at abrogating GVHD pathology. iTregs also had no additive effect when co-administered with nTregs. Notably, we observed that whereas transferred nTregs persisted for up to 60 days in transplanted animals, iTregs were undetectable after only 14 days in liver, lung, colon and spleen, indicating that reduced in vivo survival was a potential explanation for the lack of protection. Further examination, however, revealed that the inability to detect iTregs was primarily attributable to the loss of Foxp3 expression and the subsequent in vivo reversion of these cells to a proinflammatory phenotype characterized by the secretion of interferon-gamma. In prior studies (Chen et al, Blood, 2009), we demonstrated that blockade of IL-6 signaling augmented reconstitution of nTregs and reduced overall GVHD severity. To determine whether inhibition of IL-6 could stabilize Foxp3 expression and prevent phenotypic reversion of iTregs, lethally irradiated Balb/c recipients were transplanted with B6 BM and spleen cells along with in vitro-differentiated iTregs and then treated with either isotype control or anti-IL-6R-specific antibody. Analysis of cells obtained from spleen, liver, lung and colon revealed that blockade of IL-6 signaling did not prevent loss of Foxp3 expression or reversion of iTregs to a Th1 cytokine phenotype. While Tregs can be converted from conventional T cells in vitro, they can also be generated in vivo during inflammatory syndromes. We therefore examined whether in vivo induction of iTregs occurred during GVHD and the extent to which blockade of IL-6 signaling affected iTreg expansion and overall GVHD protection. To address this question, lethally irradiated Balb/c mice were transplanted with B6 Rag-1 BM cells and purified CD4+ Foxp3EGFP– T cells, and then treated with either anti-IL-6R or control antibody. We observed that in vivo conversion of Tregs was negligible in control animals (<1%), but that administration of anti-IL-6R antibody significantly increased the relative and absolute number of iTregs in GVHD target tissues with a commensurate reduction in overall pathological damage. Thus, blockade of IL-6 signaling was able to enhance reconstitution of iTregs in vivo, but had no discernible affect on adoptively transferred iTregs. In summary, these studies demonstrate that the stability of Foxp3 expression is a critical factor in the maintenance of transplantation tolerance and that instability of expression limits the utility of adoptively transferred iTregs as a source of cellular therapy for the abrogation of GVHD. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (5) ◽  
pp. 1813-1821 ◽  
Author(s):  
Jeremy B. Samon ◽  
Ameya Champhekar ◽  
Lisa M. Minter ◽  
Janice C. Telfer ◽  
Lucio Miele ◽  
...  

Abstract Notch and its ligands have been implicated in the regulation and differentiation of various CD4+ T-helper cells. Regulatory T cells (Tregs), which express the transcription factor Foxp3, suppress aberrant immune responses that are typically associated with autoimmunity or excessive inflammation. Previous studies have shown that transforming growth factor beta (TGFβ1) induces Foxp3 expression and a regulatory phenotype in peripheral T cells. Here, we show that pharmacologic inhibition of Notch signaling using γ-secretase inhibitor (GSI) treatment blocks (1) TGFβ1-induced Foxp3 expression, (2) the up-regulation of Foxp3-target genes, and (3) the ability to suppress naive T-cell proliferation. In addition, the binding of Notch1, CSL, and Smad to conserved binding sites in the foxp3 promoter can be inhibited by treatment with GSI. Finally, in vivo administration of GSI results in reduced Foxp3 expression and development of symptoms consistent with autoimmune hepatitis, a disease previously found to result from dysregulation of TGFβ signaling and regulatory T cells. Together, these findings indicate that the Notch and TGFβ signaling pathways cooperatively regulate Foxp3 expression and regulatory T-cell maintenance both in vitro and in vivo.


2009 ◽  
Vol 206 (2) ◽  
pp. 421-434 ◽  
Author(s):  
Randall H. Friedline ◽  
David S. Brown ◽  
Hai Nguyen ◽  
Hardy Kornfeld ◽  
JinHee Lee ◽  
...  

Cytotoxic T lymphocyte antigen-4 (CTLA-4) plays a critical role in negatively regulating T cell responses and has also been implicated in the development and function of natural FOXP3+ regulatory T cells. CTLA-4–deficient mice develop fatal, early onset lymphoproliferative disease. However, chimeric mice containing both CTLA-4–deficient and –sufficient bone marrow (BM)–derived cells do not develop disease, indicating that CTLA-4 can act in trans to maintain T cell self-tolerance. Using genetically mixed blastocyst and BM chimaeras as well as in vivo T cell transfer systems, we demonstrate that in vivo regulation of Ctla4−/− T cells in trans by CTLA-4–sufficient T cells is a reversible process that requires the persistent presence of FOXP3+ regulatory T cells with a diverse TCR repertoire. Based on gene expression studies, the regulatory T cells do not appear to act directly on T cells, suggesting they may instead modulate the stimulatory activities of antigen-presenting cells. These results demonstrate that CTLA-4 is absolutely required for FOXP3+ regulatory T cell function in vivo.


Blood ◽  
1995 ◽  
Vol 86 (5) ◽  
pp. 1850-1860 ◽  
Author(s):  
TA Moore ◽  
A Zlotnik

The earliest steps of intrathymic differentiation recently have been elucidated. It has been reported that both CD4lo (CD44+ CD25- c-kit+ CD3- CD4lo CD8-) and pro-T cells (CD44+ CD25+ c-kit+ CD3- CD4- CD8-, representing the next step in maturation) exhibit germline T-cell receptor beta and gamma loci, suggesting that neither population is exclusively committed to the T-cell lineage. Several groups have shown that CD4lo cells retain the capacity to generate multiple lymphoid lineages in vivo; however, the lineage commitment status of pro-T cells is unknown. To determine when T-cell lineage commitment occurs, we examined the ability of sorted CD4lo and pro-T cells to generate lymphoid lineage cells in vivo or in fetal thymic organ cultures (FTOCs). When intravenously injected into scid mice, CD4lo cells generated both T and B cells, whereas the progeny of pro-T cells contained T cells exclusively. Fetal thymic organ cultures repopulated with CD4lo cells contained both T and natural killer (NK) cells, whereas cultures repopulated with pro-T cells contained T cells almost exclusively. These observations strongly suggest that T-cell lineage commitment occurs during the transition of CD4lo to pro-T cells. Because it is likely that the thymic microenvironment plays a critical role in T-cell commitment, we compared the responses of CD4lo and pro-T cells to various cytokine combinations in vitro, as well as the ability of the cultured cells to repopulate organ cultures. Cytokine combinations that maintained T-cell repopulation potential for both CD4lo and pro-T cells were found. CD4lo cells proliferated best in response to the combination containing interleukin-1 (IL-1), IL-3, IL- 6, IL-7, and stem cell factor (SCF). Unlike CD4lo cells, pro-T cells were much more dependent upon IL-7 for proliferation and FTOC repopulation. However, combinations of cytokines lacking IL-7 were found that maintained the T-cell repopulating potential of pro-T cells, suggesting that, whereas this cytokine is clearly very important for normal pro-T cell function, it is not an absolute necessity during early T-cell expansion and differentiation.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Samantha S. Beauford ◽  
Anita Kumari ◽  
Charlie Garnett-Benson

Abstract Background The use of immunotherapy strategies for the treatment of advanced cancer is rapidly increasing. Most immunotherapies rely on induction of CD8+ tumor-specific cytotoxic T cells that are capable of directly killing cancer cells. Tumors, however, utilize a variety of mechanisms that can suppress anti-tumor immunity. CD4+ regulatory T cells can directly inhibit cytotoxic T cell activity and these cells can be recruited, or induced, by cancer cells allowing escape from immune attack. The use of ionizing radiation as a treatment for cancer has been shown to enhance anti-tumor immunity by several mechanisms including immunogenic tumor cell death and phenotypic modulation of tumor cells. Less is known about the impact of radiation directly on suppressive regulatory T cells. In this study we investigate the direct effect of radiation on human TREG viability, phenotype, and suppressive activity. Results Both natural and TGF-β1-induced CD4+ TREG cells exhibited increased resistance to radiation (10 Gy) as compared to CD4+ conventional T cells. Treatment, however, decreased Foxp3 expression in natural and induced TREG cells and the reduction was more robust in induced TREGS. Radiation also modulated the expression of signature iTREG molecules, inducing increased expression of LAG-3 and decreased expression of CD25 and CTLA-4. Despite the disconcordant modulation of suppressive molecules, irradiated iTREGS exhibited a reduced capacity to suppress the proliferation of CD8+ T cells. Conclusions Our findings demonstrate that while human TREG cells are more resistant to radiation-induced death, treatment causes downregulation of Foxp3 expression, as well as modulation in the expression of TREG signature molecules associated with suppressive activity. Functionally, irradiated TGF-β1-induced TREGS were less effective at inhibiting CD8+ T cell proliferation. These data suggest that doses of radiotherapy in the hypofractionated range could be utilized to effectively target and reduce TREG activity, particularly when used in combination with cancer immunotherapies.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A761-A761
Author(s):  
Ryan Reyes ◽  
Yilun Deng ◽  
Deyi Zhang ◽  
Niannian Ji ◽  
Neelam Mukherjee ◽  
...  

BackgroundαPD-L1 bladder cancer (BC) immunotherapy is effective in <30% of cases.1 To address the large αPD-L1-unresponsive subset of patients, we tested αIL-2/IL-2 complexes (IL-2c) that block IL-2 from binding high-affinity IL-2Rα (CD25) for preferential IL-2Rβ (CD122) binding.2 Immunosuppressive regulatory T cells capture IL-2 by CD25 whereas antitumor CD8+ T, γδ T, and NK cells use CD122. We hypothesized that the tumor microenvironment, including local immune cells in primary versus metastatic BC, differentially affects immunotherapy responses and that IL-2c effects could differ from, and thus complement αPD-L1.MethodsWe used PD-L1+ mouse BC cell lines MB49 and MBT-2, for orthotopic, intravesical (i.e., in bladder) and intravenous challenge studies of local versus lung metastatic BC.ResultsαPD-L1 or IL-2c alone reduced tumor burden and extended survival in local MB49 and MBT-2. Using in vivo cell depletions, we found that γδ T cells and NK cells, but strikingly not CD8+ T cells, were necessary for IL-2c efficacy in bladder. We confirmed γδ T cell requirements for IL-2c, but not αPD-L1 efficacy in γδ T cell-null TCRδKO mice. TCRβKO conventional T cell-null mice exhibited IL-2c, but not αPD-L1 responsiveness for orthotopic BC treatment. Neither agent alone treated lung metastatic MB49 or MBT-2 but the drug combination improved survival in both tumor models. Combination treatment effects in lungs were distinct from bladder, requiring CD8+ T and NK cells, but not γδ T cells.ConclusionsBC immunotherapy effects differ by anatomic compartment and use distinct mechanisms to treat primary and metastatic BC. CD122-directed IL-2 is a promising BC immunotherapy strategy, and IL-2c is a candidate mediator through innate immune effects. αPD-L1 could improve IL-2c efficacy by engagement of adaptive immune responses including to improve metastatic disease treatment efficacy.Ethics ApprovalAll procedures involving animals in this study were approved by the UT Health San Antonio Institutional Animal Care and Use Committee (IACUC) and conducted in accordance with UT Health San Antonio Department of Laboratory Animal Resources standards.ReferencesShah AY, Gao J, Siefker-Radtke AO. Five new therapies or just one new treatment? A critical look at immune checkpoint inhibition in urothelial cancer: Future Medicine, 2017.Arenas-Ramirez N, Zou C, Popp S, et al. Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2. Science translational medicine 2016;8(367):367ra166-367ra166.


Sign in / Sign up

Export Citation Format

Share Document