scholarly journals The Genomic Organization of the LILR Region Remained Largely Conserved Throughout Primate Evolution: Implications for Health And Disease

2021 ◽  
Vol 12 ◽  
Author(s):  
Lisanne Storm ◽  
Jesse Bruijnesteijn ◽  
Natasja G. de Groot ◽  
Ronald E. Bontrop

The genes of the leukocyte immunoglobulin-like receptor (LILR) family map to the leukocyte receptor complex (LRC) on chromosome 19, and consist of both activating and inhibiting entities. These receptors are often involved in regulating immune responses, and are considered to play a role in health and disease. The human LILR region and evolutionary equivalents in some rodent and bird species have been thoroughly characterized. In non-human primates, the LILR region is annotated, but a thorough comparison between humans and non-human primates has not yet been documented. Therefore, it was decided to undertake a comprehensive comparison of the human and non-human primate LILR region at the genomic level. During primate evolution the organization of the LILR region remained largely conserved. One major exception, however, is provided by the common marmoset, a New World monkey species, which seems to feature a substantial contraction of the number of LILR genes in both the centromeric and the telomeric region. Furthermore, genomic analysis revealed that the killer-cell immunoglobulin-like receptor gene KIR3DX1, which maps in the LILR region, features one copy in humans and great ape species. A second copy, which might have been introduced by a duplication event, was observed in the lesser apes, and in Old and New World monkey species. The highly conserved gene organization allowed us to standardize the LILR gene nomenclature for non-human primate species, and implies that most of the receptors encoded by these genes likely fulfill highly preserved functions.

2019 ◽  
Vol 72 (1-2) ◽  
pp. 131-132 ◽  
Author(s):  
Natasja G. de Groot ◽  
Nel Otting ◽  
Giuseppe Maccari ◽  
James Robinson ◽  
John A. Hammond ◽  
...  

2019 ◽  
Vol 72 (1-2) ◽  
pp. 25-36 ◽  
Author(s):  
Natasja G. de Groot ◽  
Nel Otting ◽  
Giuseppe Maccari ◽  
James Robinson ◽  
John A. Hammond ◽  
...  

2008 ◽  
Vol 82 (22) ◽  
pp. 11140-11151 ◽  
Author(s):  
William E. Diehl ◽  
Elizabeth Stansell ◽  
Shari M. Kaiser ◽  
Michael Emerman ◽  
Eric Hunter

ABSTRACT TRIM5α has been shown to be a major postentry determinant of the host range for gammaretroviruses and lentiviruses and, more recently, spumaviruses. However, the restrictive potential of TRIM5α against other retroviruses has been largely unexplored. We sought to determine whether or not Mason-Pfizer monkey virus (M-PMV), a prototype betaretrovirus isolated from rhesus macaques, was sensitive to restriction by TRIM5α. Cell lines from both Old World and New World primate species were screened for their susceptibility to infection by vesicular stomatitis virus G protein pseudotyped M-PMV. All of the cell lines tested that were established from Old World primates were found to be susceptible to M-PMV infection. However, fibroblasts established from three New World monkey species specifically resisted infection by this virus. Exogenously expressing TRIM5α from either tamarin or squirrel monkeys in permissive cell lines resulted in a block to M-PMV infection. Restriction in the resistant cell line of spider monkey origin was determined to occur at a postentry stage. However, spider monkey TRIM5α expression in permissive cells failed to restrict M-PMV infection, and interference with endogenous TRIM5α in the spider monkey fibroblasts failed to relieve the block to infectivity. Our results demonstrate that TRIM5α specificity extends to betaretroviruses and suggest that New World monkeys have evolved additional mechanisms to restrict the infection of at least one primate betaretrovirus.


HLA ◽  
2019 ◽  
Vol 95 (2) ◽  
pp. 163-165
Author(s):  
Nel Otting ◽  
Natasja G. Groot ◽  
Ronald E. Bontrop

2020 ◽  
Vol 72 (9-10) ◽  
pp. 475-487
Author(s):  
N. Otting ◽  
N. G. de Groot ◽  
R. E. Bontrop

AbstractHLA-F represents one of the nonclassical MHC class I molecules in humans. Its main characteristics involve low levels of polymorphism in combination with a restricted tissue distribution. This signals that the gene product executes a specialised function, which, however, is still poorly understood. Relatively little is known about the evolutionary equivalents of this gene in nonhuman primates, especially with regard to population data. Here we report a comparative genetic analysis of the orthologous genes of HLA-F in various great ape, Old World monkey (OWM), and New World monkey (NWM) species. HLA-F-related transcripts were found in all subjects studied. Low levels of polymorphism were encountered, although the length of the predicted gene products may vary. In most species, one or two transcripts were discovered, indicating the presence of only one active F-like gene per chromosome. An exception was provided by a New World monkey species, namely, the common marmoset. In this species, the gene has been subject to duplication, giving rise to up to six F-like transcripts per animal. In humans, great apes, and OWM, and probably the majority of the NWM species, the evolutionary equivalents of the HLA-F gene experienced purifying selection. In the marmoset, however, the gene was initially duplicated, but the expansion was subjected afterwards to various mechanisms of genetic inactivation, as evidenced by the presence of pseudogenes and an array of genetic artefacts in a section of the transcripts.


2003 ◽  
Vol 6 (1) ◽  
pp. 27-37 ◽  
Author(s):  
Julie J. Neiworth ◽  
Eric Steinmark ◽  
Benjamin M. Basile ◽  
Ryann Wonders ◽  
Frances Steely ◽  
...  

2005 ◽  
Vol 79 (7) ◽  
pp. 3930-3937 ◽  
Author(s):  
Byeongwoon Song ◽  
Hassan Javanbakht ◽  
Michel Perron ◽  
Do Hyun Park ◽  
Matthew Stremlau ◽  
...  

ABSTRACT The TRIM5α proteins of humans and some Old World monkeys have been shown to block infection of particular retroviruses following virus entry into the host cell. Infection of most New World monkey cells by the simian immunodeficiency virus of macaques (SIVmac) is restricted at a similar point. Here we examine the antiretroviral activity of TRIM5α orthologs from humans, apes, Old World monkeys, and New World monkeys. Chimpanzee and orangutan TRIM5α proteins functionally resembled human TRIM5α, potently restricting infection by N-tropic murine leukemia virus (N-MLV) and moderately restricting human immunodeficiency virus type 1 (HIV-1) infection. Notably, TRIM5α proteins from several New World monkey species restricted infection by SIVmac and the SIV of African green monkeys, SIVagm. Spider monkey TRIM5α, which has an expanded B30.2 domain v3 region due to a tandem triplication, potently blocked infection by a range of retroviruses, including SIVmac, SIVagm, HIV-1, and N-MLV. Tandem duplications in the TRIM5α B30.2 domain v1 region of African green monkeys are also associated with broader antiretroviral activity. Thus, variation in TRIM5α proteins among primate species accounts for the observed patterns of postentry restrictions in cells from these animals. The TRIM5α proteins of some monkey species exhibit dramatic lengthening of particular B30.2 variable regions and an expanded range of susceptible retroviruses.


PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e79731 ◽  
Author(s):  
Diego Garzón-Ospina ◽  
Carolina López ◽  
Luis F. Cadavid ◽  
Manuel E. Patarroyo ◽  
Manuel A. Patarroyo

Sign in / Sign up

Export Citation Format

Share Document