scholarly journals Vascular Damage, Thromboinflammation, Plasmablast Activation, T-Cell Dysregulation and Pathological Histiocytic Response in Pulmonary Draining Lymph Nodes of COVID-19

2021 ◽  
Vol 12 ◽  
Author(s):  
Jasmin D. Haslbauer ◽  
Carl Zinner ◽  
Anna K. Stalder ◽  
Jan Schneeberger ◽  
Thomas Menter ◽  
...  

Although initial immunophenotypical studies on peripheral blood and bronchoalveolar lavage samples have provided a glimpse into the immunopathology of COVID-19, analyses of pulmonary draining lymph nodes are currently scarce. 22 lethal COVID-19 cases and 28 controls were enrolled in this study. Pulmonary draining lymph nodes (mediastinal, tracheal, peribronchial) were collected at autopsy. Control lymph nodes were selected from a range of histomorphological sequelae [unremarkable histology, infectious mononucleosis, follicular hyperplasia, non-SARS related HLH, extrafollicular plasmablast activation, non-SARS related diffuse alveolar damage (DAD), pneumonia]. Samples were mounted on a tissue microarray and underwent immunohistochemical staining for a selection of immunological markers and in-situ hybridization for Epstein Barr Virus (EBV) and SARS-CoV-2. Gene expression profiling was performed using the HTG EdgeSeq Immune Response Panel. Characteristic patterns of a dysregulated immune response were detected in COVID-19: 1. An accumulation of extrafollicular plasmablasts with a relative paucity or depletion of germinal centers. 2. Evidence of T-cell dysregulation demonstrated by immunohistochemical paucity of FOXP3+, Tbet+ and LEF1+ positive T-cells and a downregulation of key genes responsible for T-cell crosstalk, maturation and migration as well as a reactivation of herpes viruses in 6 COVID-19 lymph nodes (EBV, HSV). 3. Macrophage activation by a M2-polarized, CD163+ phenotype and increased incidence of hemophagocytic activity. 4. Microvascular dysfunction, evidenced by an upregulation of hemostatic (CD36, PROCR, VWF) and proangiogenic (FLT1, TEK) genes and an increase of fibrin microthrombi and CD105+ microvessels. Taken together, these findings imply widespread dysregulation of both innate and adoptive pathways with concordant microvascular dysfunction in severe COVID-19.

2001 ◽  
Vol 194 (7) ◽  
pp. 927-940 ◽  
Author(s):  
Andreas Bräuninger ◽  
Tilmann Spieker ◽  
Klaus Willenbrock ◽  
Philippe Gaulard ◽  
Hans-Heinrich Wacker ◽  
...  

Angioimmunoblastic lymphadenopathy with dysproteinemia (AILD) is a peculiar T cell lymphoma, as expanding B cell clones are often present besides the malignant T cell clones. In addition, large numbers of Epstein-Barr virus (EBV)-infected B cells are frequently observed. To analyze the differentiation status and clonal composition of EBV-harboring B cells in AILD, single EBV-infected cells were micromanipulated from lymph nodes of six patients with frequent EBV+ cells and their rearranged immunoglobulin (Ig) genes analyzed. Most EBV-infected B cells carried mutated Ig genes, indicating that in AILD, EBV preferentially resides in memory and/or germinal center B cells. EBV+ B cell clones observed in all six cases ranged from small polyclonal to large monoclonal expansions and often showed ongoing somatic hypermutation while EBV− B cells showed little tendency for clonal expansion. Surprisingly, many members of expanding B cell clones had acquired destructive mutations in originally functional V gene rearrangements and showed an unfavorable high load of replacement mutations in the framework regions, indicating that they accumulated mutations over repeated rounds of mutation and division while not being selected through their antigen receptor. This sustained selection-free accumulation of somatic mutations is unique to AILD. Moreover, the survival and clonal expansion of “forbidden” (i.e., Ig-deficient) B cells has not been observed before in vivo and thus represents a novel type of viral latency in the B cell compartment. It is likely the interplay between the microenvironment in AILD lymph nodes and the viral transformation that leads to the survival and clonal expansion of Ig-less B cells.


2005 ◽  
Vol 49 (2-3) ◽  
pp. 285-292 ◽  
Author(s):  
Elise Landais ◽  
Xavier Saulquin ◽  
Elisabeth Houssaint

1998 ◽  
Vol 187 (9) ◽  
pp. 1395-1402 ◽  
Author(s):  
M.F.C. Callan ◽  
L. Tan ◽  
N. Annels ◽  
G.S. Ogg ◽  
J.D.K. Wilson ◽  
...  

Primary infection with virus can stimulate a vigorous cytotoxic T cell response. The magnitude of the antigen-specific component versus the bystander component of a primary T cell response remains controversial. In this study, we have used tetrameric major histocompatibility complex–peptide complexes to directly visualize antigen-specific cluster of differentration (CD)8+ T cells during the primary immune response to Epstein-Barr virus (EBV) infection in humans. We show that massive expansion of activated, antigen-specific T cells occurs during the primary response to this virus. In one individual, T cells specific for a single EBV epitope comprised 44% of the total CD8+ T cells within peripheral blood. The majority of the antigen-specific cells had an activated/memory phenotype, with expression of human histocompatibility leukocyte antigen (HLA) DR, CD38, and CD45RO, downregulation of CD62 leukocyte (CD62L), and low levels of expression of CD45RA. After recovery from AIM, the frequency of antigen-specific T cells fell in most donors studied, although populations of antigen-specific cells continued to be easily detectable for at least 3 yr.


Blood ◽  
2005 ◽  
Vol 105 (11) ◽  
pp. 4226-4234 ◽  
Author(s):  
Lixin Wang ◽  
Eric Dobrzynski ◽  
Alexander Schlachterman ◽  
Ou Cao ◽  
Roland W. Herzog

Abstract Adeno-associated viral (AAV) vectors have been successfully used for therapeutic expression of systemic transgene products (such as factor IX or erythropoietin) following in vivo administration to skeletal muscle of animal models of inherited hematologic disorders. However, an immune response may be initiated if the transgene product represents a neoantigen. Here, we use ovalbumin (OVA) as a model antigen and demonstrate immune-mediated elimination of expression on muscle-directed AAV-2 gene transfer. Administration to immune competent mice resulted in transient systemic OVA expression. Within 10 days, OVA-specific T-helper cells had been activated in draining lymph nodes, an inflammatory immune response ensued, and OVA-expressing muscle fibers were destroyed by a cytotoxic CD8+ T-cell response. Use of a muscle-specific promoter did not prevent this immune response. Adoptively transferred CD4+ cells transgenic for a T-cell receptor specific to OVA peptide-major histocompatibility complex class II showed antigen-specific, vector dose-dependent proliferation confined to the draining lymph nodes of AAV-OVA–transduced muscle within 5 days after gene transfer and subsequently participated in lymphocytic infiltration of transduced muscle. This study documents that a local immune response limits sustained expression of a secreted protein in muscle gene transfer, a finding that may have consequences for design of clinical protocols.


2014 ◽  
Vol 89 (1) ◽  
pp. 703-712 ◽  
Author(s):  
Melissa J. Rist ◽  
Michelle A. Neller ◽  
Jacqueline M. Burrows ◽  
Scott R. Burrows

ABSTRACTPolymorphism in the human leukocyte antigen (HLA) loci ensures that the CD8+T cell response to viruses is directed against a diverse range of antigenic epitopes, thereby minimizing the impact of virus escape mutation across the population. The BZLF1 antigen of Epstein-Barr virus is an immunodominant target for CD8+T cells, but the response has been characterized only in the context of a limited number of HLA molecules due to incomplete epitope mapping. We have now greatly expanded the number of defined CD8+T cell epitopes from BZLF1, allowing the response to be evaluated in a much larger proportion of the population. Some regions of the antigen fail to be recognized by CD8+T cells, while others include clusters of overlapping epitopes presented by different HLA molecules. These highly immunogenic regions of BZLF1 include polymorphic sequences, such that up to four overlapping epitopes are impacted by a single amino acid variation common in different regions of the world. This focusing of the immune response to limited regions of the viral protein could be due to sequence similarity to human proteins creating “immune blind spots” through self-tolerance. This study significantly enhances the understanding of the immune response to BZLF1, and the precisely mapped T cell epitopes may be directly exploited in vaccine development and adoptive immunotherapy.IMPORTANCEEpstein-Barr virus (EBV) is an important human pathogen, associated with several malignancies, including nasopharyngeal carcinoma and Hodgkin lymphoma. T lymphocytes are critical for virus control, and clinical trials aimed at manipulating this arm of the immune system have demonstrated efficacy in treating these EBV-associated diseases. These trials have utilized information on the precise location of viral epitopes for T cell recognition, for either measuring or enhancing responses. In this study, we have characterized the T cell response to the highly immunogenic BZLF1 antigen of EBV by greatly expanding the number of defined T cell epitopes. An unusual clustering of epitopes was identified, highlighting a small region of BZLF1 that is targeted by the immune response of a high proportion of the world's population. This focusing of the immune response could be utilized in developing vaccines/therapies with wide coverage, or it could potentially be exploited by the virus to escape the immune response.


2001 ◽  
Vol 193 (9) ◽  
pp. 1105-1112 ◽  
Author(s):  
Espen S. Baekkevold ◽  
Takeshi Yamanaka ◽  
Roger T. Palframan ◽  
Hege S. Carlsen ◽  
Finn P. Reinholt ◽  
...  

Lymphocyte homing to secondary lymphoid tissue is defined by a multistep sequence of interactions between lymphocytes and endothelial cells in high endothelial venules (HEVs). After initial selectin-mediated tethering and rolling, firm adhesion of lymphocytes requires rapid upregulation of lymphocyte integrin adhesiveness. This step is mediated in part by the HEV-derived chemokine SLC (secondary lymphoid-tissue chemokine, or CCL21) that binds to the CC chemokine receptor (CCR)7 on lymphocytes. However, the CC chemokine ELC (Epstein-Barr virus–induced molecule 1 ligand chemokine, or CCL19) shares the same receptor, and ELC transcripts have been observed in the T cell areas of lymphoid organs. Here, we show that perivascular ELC is transcytosed to the luminal surfaces of HEVs and enables efficient T cell homing to lymph nodes. In situ hybridization on sections of human tonsil showed no ELC mRNA in HEVs, but immunostaining revealed ELC protein in cytoplasmic vesicles of HEV cells. Furthermore, ELC injected into the footpads of mice entered the draining lymph nodes and was presented by HEVs. Finally, intracutaneous injections of ELC in mice lacking functionally relevant ELC and SLC (plt/plt mice) restored T cell trafficking to draining lymph nodes as efficiently as SLC. We conclude that perivascular ELC is transcytosed to the luminal surfaces of HEVs and participates in CCR7-mediated triggering of lymphocyte arrest.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 20-21
Author(s):  
Adam Yuh Lin ◽  
Bongseo Choi ◽  
Taehoon Sim ◽  
Leo I. Gordon ◽  
Dong-Hyun Kim

Introduction: Although radiation therapy (RT) has limited clinical efficacy for advanced stage lymphoma, RT has been used as a method for in situ vaccination to generate an abscopal effect. Frank et al. combined low dose RT with class C CpG deoxynucleotides (CpGs) for the treatment of advanced stage indolent lymphoma (Cancer Discovery, 2018). CpGs are toll-like receptor 9 agonists and activates the innate immune system. The overall response rate was high (89.6%) in this trial but only 7 of 29 patients (pts) (24%) had partial response and 1 had a complete response (3%). Unlike external beam RT, photothermal therapy (PTT) using gold nanoparticles (AuNPs) can generate a strong in situ vaccination effect by heat ablation of tumors (Bear et al. PLOS One, 2013). (Figure 1A) The ablation induced increased CD8 T cell infiltration in non-treated tumors and dendritic cell maturation in the draining lymph nodes, but it also increased systemic immune suppression via increased myeloid suppressor cells (MDSCs) in a melanoma model. MDSCs differentiate into active macrophages when stimulated by CpGs. Other PTT methods have been evaluated in combination with check-point inhibitors with success in solid tumor murine models (Liu et al. Immunotherapy 2018; Chen et al. Nature Comm. 2016). Therefore, we hypothesized that PTT in combination with CpG can elicit a stronger the in situ vaccination effect compared with RT with CpG in a murine lymphoma model. Methods: PTT is achieved by exciting branched AuNP (BNP) with a near infrared (NIR) laser (808nm). For the dual lymphoma model, A20 lymphoma cells in Matrigel were injected into the right flank of BALB/c mice to establish a primary tumor. Three days later, a secondary tumor was established in the left flank. When the tumor reached 5 mm in diameter, PTT with CpG (sequence 2395) or RT (10Gy) with CpG of the primary tumor were performed. Control groups included PTT without CpG, CpG only, BNP with CpG without PTT, and PBS. Sixteen days after PTT or RT, mice are euthanized and flow cytometry was performed on the primary tumor, secondary tumor, spleen, and draining lymph nodes and analyzed for T cells and dendritic cells (DC). Results: Within 5 minutes after PTT, the temperature of the treated primary tumor reached almost 60°C. The primary tumor growth was inhibited for both RT/CpG and PTT/CpG treatment groups compared with the PBS control group. RT/CpGs treated primary tumors demonstrated re-growth 14 days (D14) after treatment while PTT/CpG treated tumors did not (p<0.01). For the non-treated secondary tumors, the RT/CpG group had delayed but continued tumor growth compared with the PBS control group, while PTT/CpG maintained tumor growth suppression, with the growth curves separating from the RT/CpG group as early as D9 (p<0.01). (Figure 1B) At the end of the study (D16), PTT/CpG group secondary tumors (344mm3) were almost a third of the size of RT/CpG group (958 mm3) (p=0.006). To further investigate the mechanism for the improved abscopal effect, we compared the differences in immune response between RT/CpG and PTT/CpG treatment groups. The amount of mature DCs (CD80+CD86+ in CD11c+ cells) in draining lymph nodes of both the PTT/CpG treated tumor (14.9%) and non-treated tumor (15.9%) were significantly higher than the RT/CpG group (8.78%, p=0.006; 10.2%, p=0.007, respectively). For the non-treated tumor, the PTT/CpG group had significantly increased amounts of CD8 (62.6%) T cell infiltration compared with the RT/CpG group (45.4%, p=0.022) as well as a higher CD8 to CD4 T cell ratio (1.91) compared with the RT/CpG group (0.95, p=0.042). Effector memory T cells in the secondary tumor (44.6%) and spleen (29.9%) for the PTT/CpG group was also higher than the RT/CpG group (23.2%, p=0.008; 21.2%, p=0.011, respectively). These changes suggest a significant exaggeration in T-cell education, which consequently results in suppression of lymphoma tumor growth. Conclusion: Overall, we demonstrated as a proof-of-concept that PTT/CpG generated a stronger in situ vaccination effect when compared with RT/CpG therapy in lymphoma. In addition, we have described the immune responses after PTT in combination with CpG in a lymphoma model, showing increased dendritic cell maturation and T cell mediated immune response. Further studies including dosing schedule, combination therapy with check-point inhibitors or other immune based treatments will move this technology closer to clinical practice. Disclosures Gordon: Zylem Biosciences: Patents & Royalties: Patents, No Royalties.


Sign in / Sign up

Export Citation Format

Share Document