scholarly journals DNA Methylation Profiles of Purified Cell Types in Bronchoalveolar Lavage: Applications for Mixed Cell Paediatric Pulmonary Studies

2021 ◽  
Vol 12 ◽  
Author(s):  
Shivanthan Shanthikumar ◽  
Melanie R. Neeland ◽  
Richard Saffery ◽  
Sarath C. Ranganathan ◽  
Alicia Oshlack ◽  
...  

In epigenome-wide association studies analysing DNA methylation from samples containing multiple cell types, it is essential to adjust the analysis for cell type composition. One well established strategy for achieving this is reference-based cell type deconvolution, which relies on knowledge of the DNA methylation profiles of purified constituent cell types. These are then used to estimate the cell type proportions of each sample, which can then be incorporated to adjust the association analysis. Bronchoalveolar lavage is commonly used to sample the lung in clinical practice and contains a mixture of different cell types that can vary in proportion across samples, affecting the overall methylation profile. A current barrier to the use of bronchoalveolar lavage in DNA methylation-based research is the lack of reference DNA methylation profiles for each of the constituent cell types, thus making reference-based cell composition estimation difficult. Herein, we use bronchoalveolar lavage samples collected from children with cystic fibrosis to define DNA methylation profiles for the four most common and clinically relevant cell types: alveolar macrophages, granulocytes, lymphocytes and alveolar epithelial cells. We then demonstrate the use of these methylation profiles in conjunction with an established reference-based methylation deconvolution method to estimate the cell type composition of two different tissue types; a publicly available dataset derived from artificial blood-based cell mixtures and further bronchoalveolar lavage samples. The reference DNA methylation profiles developed in this work can be used for future reference-based cell type composition estimation of bronchoalveolar lavage. This will facilitate the use of this tissue in studies examining the role of DNA methylation in lung health and disease.

Author(s):  
Shijie C Zheng ◽  
Charles E Breeze ◽  
Stephan Beck ◽  
Danyue Dong ◽  
Tianyu Zhu ◽  
...  

Abstract Summary It is well recognized that cell-type heterogeneity hampers the interpretation of Epigenome-Wide Association Studies (EWAS). Many tools have emerged to address this issue, including several R/Bioconductor packages that infer cell-type composition. Here we present a web application for cell-type deconvolution, which offers the functionality of our EpiDISH Bioconductor/R package in a user-friendly GUI environment. Users can upload their data to infer cell-type composition and differentially methylated cytosines in individual cell-types (DMCTs) for a range of different tissues. Availability and implementation EpiDISH web server is implemented with Shiny in R, and is freely available at https://www.biosino.org/EpiDISH/.


PLoS ONE ◽  
2016 ◽  
Vol 11 (1) ◽  
pp. e0147519 ◽  
Author(s):  
Yuh Shiwa ◽  
Tsuyoshi Hachiya ◽  
Ryohei Furukawa ◽  
Hideki Ohmomo ◽  
Kanako Ono ◽  
...  

2006 ◽  
Vol 290 (6) ◽  
pp. L1216-L1226 ◽  
Author(s):  
Somshuvra Mukhopadhyay ◽  
Pravin B. Sehgal

Monocrotaline (MCT) causes pulmonary hypertension in the rat by a mechanism characterized by megalocytosis (enlarged cells with enlarged endoplasmic reticulum and Golgi and a cell cycle arrest) of pulmonary arterial endothelial (PAEC), arterial smooth muscle, and type II alveolar epithelial cells. In cell culture, although megalocytosis is associated with a block in entry into mitosis in both lung endothelial and epithelial cells, DNA synthesis is stimulated in endothelial but inhibited in epithelial cells. The molecular mechanism(s) for this dichotomy are unclear. While MCTP-treated PAEC and lung epithelial (A549) cells both showed an increase in the “promitogenic” transcription factor STAT3 levels and in the IL-6-induced nuclear pool of PY-STAT3, this was transcriptionally inactive in A549 but not in PAEC cells. This lack of transcriptional activity of STAT3 in A549 cells correlated with the cytoplasmic sequestration of the STAT3 coactivators CBP/p300 and SRC1/NcoA in A549 cells but not in PAEC. Both cell types displayed a Golgi trafficking block, loss of caveolin-1 rafts, and increased nuclear Ire1α, but an incomplete unfolded protein response (UPR) with little change in levels of UPR-induced chaperones including GRP78/BiP. There were discordant alterations in cell cycle regulatory proteins in the two cell types such as increase in levels of both cyclin D1 and p21 simultaneously, but with a decrease in cdc2/cdk1, a kinase required for entry into mitosis. While both cell types showed increased cytoplasmic geminin, the DNA synthesis-initiating protein Cdt1 was predominantly nuclear in PAEC but remained cytoplasmic in A549 cells, consistent with the stimulation of DNA synthesis in the former but an inhibition in the latter cell type. Thus differences in cell type-specific alterations in subcellular trafficking of critical regulatory molecules (such as CBP/p300, SRC1/NcoA, Cdt1) likely account for the dichotomy of the effects of MCTP on DNA synthesis in endothelial and epithelial cells.


2019 ◽  
Author(s):  
Laura E. Sanman ◽  
Ina W. Chen ◽  
Jake M. Bieber ◽  
Veronica Steri ◽  
Byron Hann ◽  
...  

AbstractRenewing tissues have the remarkable ability to continually produce both proliferative progenitor and specialized differentiated cell-types. How are complex milieus of microenvironmental signals interpreted to coordinate tissue cell-type composition? Here, we develop a high-throughput approach that combines organoid technology and quantitative imaging to address this question in the context of the intestinal epithelium. Using this approach, we comprehensively survey enteroid responses to individual and paired perturbations to eight epithelial signaling pathways. We uncover culture conditions that enrich for specific cell-types, including Lgr5+ stem and enteroendocrine cells. We analyze interactions between perturbations and dissect mechanisms underlying an unexpected mutual antagonism between EGFR and IL-4 signals. Finally, we show that, across diverse perturbations, modulating proliferation of transit-amplifying cells also consistently changes the composition of differentiated secretory and absorptive cell-types. This property is conserved in vivo and can arise from differential amplification of secretory and absorptive progenitor cells. Taken together, the observations highlight an underappreciated role for transit-amplifying cells in which proliferation of these short-lived progenitors provides a lineage-based mechanism for tuning differentiated cell-type composition.


2021 ◽  
Author(s):  
Yunhee Jeong ◽  
Reka Toth ◽  
Marlene Ganslmeier ◽  
Kersten Breuer ◽  
Christoph Plass ◽  
...  

DNA methylation sequencing is becoming increasingly popular, yielding genome-wide methylome data at single-base pair resolution through the novel cost- and labor-optimized protocols. It has tremendous potential for cell-type heterogeneity analysis, particularly in tumors, due to intrinsic read-level information. Although diverse deconvolution methods were developed to infer cell-type composition based on bulk sequencing-based methylomes, their systematic evaluation has not been performed so far. Here, we thoroughly review and evaluate five previously published deconvolution methods: Bayesian epiallele detection (BED), PRISM, csmFinder + coMethy, ClubCpG and MethylPurify, together with two array-based methods, MeDeCom and Houseman as a comparison group. Sequencing-based deconvolution methods consist of two main steps, informative region selection and cell-type composition estimation. Accordingly, we individually assessed the performance of each step and demonstrated the impact of the former step upon the performance of the following one. In conclusion, we demonstrate the best method showing the highest accuracy in different samples, and infer factors affecting cell-type deconvolution performance according to the number of cell types in the mixture. We found that cell-type deconvolution performance is influenced by different factors according to the number of components in the mixture. Whereas selecting similar genomic regions to DMRs generally contributed to increasing the performance in bi-component mixtures, the uniformity of cell-type distribution showed a high correlation with the performance in five cell-type bulk analyses.


2018 ◽  
Author(s):  
Michael Lenz ◽  
Ilja C.W. Arts ◽  
Ralf L.M. Peeters ◽  
Theo M. de Kok ◽  
Gökhan Ertaylan

AbstractBackgroundHighly specialized cells work in synergy forming tissues to perform functions required for the survival of organisms. Understanding this tissue-specific cellular heterogeneity and homeostasis is essential to comprehend the development of diseases within the tissue and also for developing regenerative therapies. Cellular subpopulations in the adipose tissue have been related to disease development, but efforts towards characterizing the adipose tissue cell type composition are limited due to lack of robust cell surface markers, limited access to tissue samples, and the labor-intensive process required to identify them.ResultsWe propose a framework, identifying cellular heterogeneity while providing state-of-the-art cellular markers for each cell type present in tissues using transcriptomics level analysis. We validate our approach with an independent dataset and present the most comprehensive study of adipose tissue cell type composition to date, determining the relative amounts of 21 different cell types in 779 adipose tissue samples detailing differences across four adipose tissue depots, between genders, across ranges of BMI and in different stages of type-2 diabetes. We also highlight the heterogeneity in reported marker-based studies of adipose tissue cell type composition and provide novel cellular markers to distinguish different cell types within the adipose tissue.ConclusionsOur study provides a systematic framework for studying cell type composition in a given tissue and valuable insights into adipose tissue cell type heterogeneity in health and disease.


2021 ◽  
Author(s):  
Wenjing Ma ◽  
Sumeet Sharma ◽  
Peng Jin ◽  
Shannon L Gourley ◽  
Zhaohui Qin

The rapid proliferation of single-cell RNA-sequencing (scRNA-seq) datasets have revealed cell heterogeneity at unprecedented scales. Several deconvolution methods have been developed to decompose bulk experiments to reveal cell type contributions. However, these methods lack power in identifying the accurate cell type composition when having a considerable amount of sub-cell types in the reference dataset. Here, we present LRcell, a R Bioconductor package (http://bioconductor.org/packages/release/bioc/html/LRcell.html) aiming to identify specific sub-cell type(s) that drives the changes observed in a bulk RNA-seq differential gene expression experiment. In addition, LRcell provides pre-embedded marker genes computed from putative single-cell RNA-seq experiments as options to execute the analyses.


Author(s):  
Francisco Avila Cobos ◽  
José Alquicira-Hernandez ◽  
Joseph Powell ◽  
Pieter Mestdagh ◽  
Katleen De Preter

AbstractMany computational methods to infer cell type proportions from bulk transcriptomics data have been developed. Attempts comparing these methods revealed that the choice of reference marker signatures is far more important than the method itself. However, a thorough evaluation of the combined impact of data transformation, pre-processing, marker selection, cell type composition and choice of methodology on the results is still lacking.Using different single-cell RNA-sequencing (scRNA-seq) datasets, we generated hundreds of pseudo-bulk mixtures to evaluate the combined impact of these factors on the deconvolution results. Along with methods to perform deconvolution of bulk RNA-seq data we also included five methods specifically designed to infer the cell type composition of bulk data using scRNA-seq data as reference.Both bulk and single-cell deconvolution methods perform best when applied to data in linear scale and the choice of normalization can have a dramatic impact on the performance of some, but not all methods. Overall, single-cell methods have comparable performance to the best performing bulk methods and bulk methods based on semi-supervised approaches showed higher error and lower correlation values between the computed and the expected proportions. Moreover, failure to include cell types in the reference that are present in a mixture always led to substantially worse results, regardless of any of the previous choices. Taken together, we provide a thorough evaluation of the combined impact of the different factors affecting the computational deconvolution task across different datasets and propose general guidelines to maximize its performance.


Sign in / Sign up

Export Citation Format

Share Document