scholarly journals Molecular Detection of Bartonella sp. in Psathyromyia shannoni and Lutzomyia cruciata From Northeastern Mexico

2021 ◽  
Vol 2 ◽  
Author(s):  
Yokomi N. Lozano-Sardaneta ◽  
Nadia Joselyne Soto-Olguín ◽  
Jorge J. Rodríguez-Rojas ◽  
Sokani Sánchez-Montes ◽  
Eduardo A. Rebollar-Téllez ◽  
...  

Phlebotomine sand flies are vectors of Leishmania spp., Bartonella bacilliformis, and several arboviruses worldwide. In Mexico, the presence of Bartonella species is associated sporadically with arthropods and little is known on the diversity of insects that could be incriminated with its transmission. The aim of this study was to perform a molecular detection of Bartonella DNA in sand fly species collected in northeastern Mexico. Sand flies were collected at the states of Nuevo Leon and Tamaulipas from June to August 2010, using 16 light traps per night. Sand fly species were morphologically identified, and for Bartonella detection, we amplified ~378 bp of the citrate synthase gene (gltA). DNA sequences were compared in a phylogenetic reconstruction based on maximum likelihood. A total of 532 specimens from seven sand fly species were morphologically identified, where 11 specimens from Tamaulipas tested positive for the presence of a new lineage of Bartonella sp. associated with Psathyromyia shannoni and Lutzomyia cruciata. This work represents the second record of Bartonella-associated with sand flies outside of the endemic area of Carrion’s disease. More studies are necessary to understand their life cycle, transmission dynamics, and their relationship with sand fly species.

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Gabriella Gaglio ◽  
Ettore Napoli ◽  
Francesca Arfuso ◽  
Jessica Maria Abbate ◽  
Salvatore Giannetto ◽  
...  

Light traps represent the most used attractive system to collect and monitor phlebotomine sand flies. Recent studies have suggested that light traps can be easily upgraded by the use of light-emitting diode (LED) with positive effects on trap design, weight, and battery life. However, scant data on the effect of different LED colours on the attractiveness to phlebotomine sand fly species are available in literature. In this study, the capture performances of light traps equipped with different LED colours on phlebotomine sand fly species indigenous in the Mediterranean area were evaluated. Phlebotomine sand fly collections were performed using a classical light trap (CLT), equipped with a traditional incandescent lamp, and five Laika 4.0 light traps supplied, each with LED of different colours and wavelengths: (i) white; (ii) red; (iii) green; (iv) blue; (v) UV. Light traps were set for three consecutive nights fortnightly from May to October 2017 and climate data recorded using a meteorological station. A total of 411 phlebotomine sand flies (191 males and 220 females), belonging to three different species, namely, Phlebotomus perniciosus (n= 298, 141 males and 157 females), Sergentomyia minuta (n=110, 48 males and 62 females), and Phlebotomus neglectus (n=3, 2 males and 1 females) were collected. Abundance of capture was influenced by colours of LED and time. The highest number of phlebotomine sand flies was captured on June (P<0.01) and by UV LED (P<0.01). As regard to species, P. perniciosus was mainly captured by UV LED on June (P<0.01). No effect of time (P>0.05) or LED colour (P>0.05) was recorded for S. minuta and P. neglectus. According to the results of the present study light trap equipped with UV LED can represent an effective tool for the capture of sand fly species in the Mediterranean area.


2022 ◽  
Vol 16 (1) ◽  
pp. e0009952
Author(s):  
Kamal Eddine Benallal ◽  
Rafik Garni ◽  
Zoubir Harrat ◽  
Petr Volf ◽  
Vít Dvorak

Background Phlebotomine sand flies (Diptera: Psychodidae) are important vectors of various human and animal pathogens such as Bartonella bacilliformis, Phlebovirus, and parasitic protozoa of the genus Leishmania, causative agent of leishmaniases that account among most significant vector-borne diseases. The Maghreb countries Mauritania, Morocco, Algeria, Tunisia, and Libya occupy a vast area of North Africa and belong to most affected regions by these diseases. Locally varying climatic and ecological conditions support diverse sand fly fauna that includes many proven or suspected vectors. The aim of this review is to summarize often fragmented information and to provide an updated list of sand fly species of the Maghreb region with illustration of species-specific morphological features and maps of their reported distribution. Materials and methods The literature search focused on scholar databases to review information on the sand fly species distribution and their role in the disease transmissions in Mauritania, Morocco, Algeria, Tunisia, and Libya, surveying sources from the period between 1900 and 2020. Reported distribution of each species was collated using Google Earth, and distribution maps were drawn using ArcGIS software. Morphological illustrations were compiled from various published sources. Results and conclusions In total, 32 species of the genera Phlebotomus (Ph.) and Sergentomyia (Se.) were reported in the Maghreb region (15 from Libya, 18 from Tunisia, 23 from Morocco, 24 from Algeria, and 9 from Mauritania). Phlebotomus mariae and Se. africana subsp. asiatica were recorded only in Morocco, Ph. mascitti, Se. hirtus, and Se. tiberiadis only in Algeria, whereas Ph. duboscqi, Se. dubia, Se. africana africana, Se. lesleyae, Se. magna, and Se. freetownensis were reported only from Mauritania. Our review has updated and summarized the geographic distribution of 26 species reported so far in Morocco, Algeria, Tunisia, and Libya, excluding Mauritania from a detailed analysis due to the unavailability of accurate distribution data. In addition, morphological differences important for species identification are summarized with particular attention to closely related species such as Ph. papatasi and Ph. bergeroti, Ph. chabaudi, and Ph. riouxi, and Se. christophersi and Se. clydei.


2014 ◽  
Vol 56 (4) ◽  
pp. 357-360 ◽  
Author(s):  
Vanessa Cristina Fitipaldi Veloso Guimarães ◽  
Pietra Lemos Costa ◽  
Fernando José da Silva ◽  
Fábio Lopes de Melo ◽  
Filipe Dantas-Torres ◽  
...  

Several phlebotomine sand fly species have been regarded as putative or proven vectors of parasites of the genus Leishmania in Brazil, but data for the northeastern region remains incipient. In this study, a total of 600 phlebotomine sand flies were grouped in pools of 10 specimens each and tested by a Leishmania genus-specific PCR and by a PCR targeting Leishmania (Leishmania) infantum. Fourteen out of 60 pools were positive by the genus-specific PCR, being five pools of L. migonei, seven of L. complexa, one of L. sordellii and one of L. naftalekatzi, which correspond to a minimal infection rate of 2.3% (14/600). Our results, associated with their known anthropophily and their abundance, suggest the participation of L. migonei and L. complexa as vectors of Leishmania in northeastern Brazil. Remarkably, this is the first time in this country that the detection of Leishmania DNA in L. sordellii and L. naftalekatzi has been reported, but future studies are necessary to better understand the significance of these findings.


2021 ◽  
Author(s):  
Tatiana Sulesco ◽  

Phlebotomine sand flies are vectors of several infectious pathogens, including parasitic protozoans of the genus Leishmania and phleboviruses. Increasing sand fly biting nuisance reported by residents from southern Republic of Moldova since 2011 initiated this study. Ceadir-Lunga, a semi-urban locality in southern Republic of Moldova was selected for seasonal sand fly collections outdoors and indoors in 2015 and 2017 using CDC light traps and manual aspirators. Continuous trapping showed markedly longer activity of P. papatasi indoors. Specimens were collected from first aspirations in the second half of June until last collections in mid-September, suggesting that the actual indoor activity of P. papatasi may have been longer. Low numbers of trapped specimens do not allow make accurate conclusions regarding the seasonal dynamics.


2021 ◽  
Vol 15 (7) ◽  
pp. e0009517
Author(s):  
Victor O. Zorrilla ◽  
Marisa E. Lozano ◽  
Liz J. Espada ◽  
Michael Kosoy ◽  
Clifton McKee ◽  
...  

Background In Peru, the information regarding sand fly vectors of leishmaniasis and bartonellosis in the Amazon region is limited. In this study, we carried out sand fly collections in Peruvian lowland and highland jungle areas using different trap type configurations and screened them for Leishmania and Bartonella DNA. Methodology/Principal findings Phlebotomine sand flies were collected in Peruvian Amazon jungle and inter Andean regions using CDC light trap, UV and color LED traps, Mosquito Magnet trap, BG Sentinel trap, and a Shannon trap placed outside the houses. Leishmania spp. screening was performed by kDNA PCR and confirmed by a nested cytochrome B gene (cytB) PCR. Bartonella spp. screening was performed by ITS PCR and confirmed by citrate synthase gene (gltA). The PCR amplicons were sequenced to identify Leishmania and Bartonella species. UV and Blue LED traps collected the highest average number of sand flies per hour in low jungle; UV, Mosquito Magnet and Shannon traps in high jungle; and Mosquito Magnet in inter Andean region. Leishmania guyanensis in Lutzomyia carrerai carrerai and L. naiffi in Lu. hirsuta hirsuta were identified based on cytB sequencing. Bartonella spp. related to Bartonella bacilliformis in Lu. whitmani, Lu. nevesi, Lu. hirsuta hirsuta and Lu. sherlocki, and a Bartonella sp. related to Candidatus B. rondoniensis in Lu. nevesi and Lu. maranonensis were identified based on gltA gene sequencing. Conclusions/Significance UV, Blue LED, Mosquito Magnet and Shannon traps were more efficient than the BG-Sentinel, Green, and Red LED traps. This is the first report of L. naiffi and of two genotypes of Bartonella spp. related to B. bacilliformis and Candidatus B. rondoniensis infecting sand fly species from the Amazon region in Peru.


2020 ◽  
Author(s):  
Shaun Wachter ◽  
Linda D. Hicks ◽  
Rahul Raghavan ◽  
Michael F. Minnick

AbstractBartonella bacilliformis, the etiological agent of Carrión’s disease, is a Gram-negative, facultative intracellular alphaproteobacterium. Carrión’s disease is an emerging but neglected tropical illness endemic to Peru, Colombia, and Ecuador. B. bacilliformis is spread between humans through the bite of female phlebotomine sand flies. As a result, the pathogen encounters significant and repeated environmental shifts during its life cycle, including changes in pH and temperature. In most bacteria, small non-coding RNAs (sRNAs) serve as effectors that may post-transcriptionally regulate the stress response to such changes. However, sRNAs have not been characterized in B. bacilliformis, to date. We therefore performed total RNA-sequencing analyses on B. bacilliformis grown in vitro then shifted to one of ten distinct conditions that simulate various environments encountered by the pathogen during its life cycle. From this, we identified 160 sRNAs significantly expressed under at least one of the conditions tested. sRNAs included the highly-conserved tmRNA, 6S RNA, RNase P RNA component, SRP RNA component, ffH leader RNA, and the alphaproteobacterial sRNAs αr45 and speF leader RNA. In addition, 153 other potential sRNAs of unknown function were discovered. Northern blot analysis was used to confirm the expression of eight novel sRNAs. We also characterized a Bartonellabacilliformisgroup I intron (BbgpI) that disrupts an un-annotated tRNACCUArg gene and determined that the intron splices in vivo and self-splices in vitro. Furthermore, we demonstrated the molecular targeting of Bartonellabacilliformissmall RNA 9(BbsR9) to transcripts of the ftsH, nuoF, and gcvT genes, in vitro.Author summaryB. bacilliformis is a bacterial pathogen that is transmitted between humans by phlebotomine sand flies. Bacteria often express sRNAs to fine-tune the production of proteins involved in a wide array of biological processes. We cultured B. bacilliformis in vitro under standard conditions then shifted the pathogen for a period of time to ten distinct environments, including multiple temperatures, pH levels, and infections of human blood and human vascular endothelial cells. After RNA-sequencing, a manual transcriptome search identified 160 putative sRNAs, including seven highly-conserved sRNAs and 153 novel potential sRNAs. We then characterized two of the novel sRNAs, BbgpI and BbsR9. BbgpI is a group I intron (ribozyme) that self-splices and disrupts an unannotated gene coding for a transfer RNA (tRNACCUArg). BbsR9 is an intergenic sRNA expressed under conditions that simulate the sand fly. We found that BbsR9 targets transcripts of the ftsH, nuoF, and gcvT genes. Furthermore, we determined the specific sRNA-mRNA interactions responsible for BbsR9 binding to its target mRNAs through in vitro mutagenesis and binding assays.


Author(s):  
Paula Cavalcante Lamy Serra e Meira ◽  
Bruna Lacerda Abreu ◽  
Ana Paula Lusardo de Almeida Zenóbio ◽  
Cristiani de Castilho Sanguinette ◽  
Felipe Dutra Rêgo ◽  
...  

Abstract Sand flies are often collected in urban areas, which has several implications for the risk of transmission of Leishmania Ross, 1903, to humans and other mammals. Given this scenario, we describe the sand fly fauna of caves and their surroundings in Mangabeiras Municipal Park (MMP) and Paredão Serra do Curral Park (PSCP), both located in the urban area of Belo Horizonte, Minas Gerais, Brazil, an endemic focus of visceral and cutaneous leishmaniasis. Collections were conducted monthly from November 2011 to October 2012, using CDC light traps exposed for two consecutive nights in four caves and their surroundings. Nonsystematized collections using Shannon traps and active searches were also performed around the caves. The presence of Leishmania DNA in collected female sand flies was evaluated by ITS1-PCR. A total of 857 sand flies representing fourteen species were collected in MMP, of which Evandromyia edwardsi (Mangabeira, 1941) was the most abundant. Leishmania amazonensis was detected in Brumptomyia nitzulescui (Costa Lima, 1932) and Ev. edwardsi, with the latter also having Leishmania braziliensis, Leishmania infantum, and Leishmania sp. A total of 228 sand flies representing four species were collected in PSCP, of which Sciopemyia microps (Mangabeira, 1942) was the most abundant. No females from PSCP were positive for Leishmania-DNA. Studies aimed at describing sand fly faunas of cave environments and detecting Leishmania are essential to understanding the relationship between these insects and this ecotope and assessing and monitoring areas that may pose risks to the health of visitors and employees.


2019 ◽  
Vol 57 (1) ◽  
pp. 259-265
Author(s):  
Nam Sinh Vu ◽  
Son Hai Tran ◽  
Phong Vu Tran ◽  
Tu Cong Tran ◽  
Duong Nhu Tran ◽  
...  

Abstract The study aims to make an update on the distribution and ecology of sand flies in the Quang Ninh province, Northern Vietnam, where Leishmania cases were reported in 2001. Seventeen sites were chosen in three districts of the province: Ha Long, Cam Pha, and Hoanh Bo. Phlebotomine sand flies were collected using 68 CDC light traps from May 30 to 3 June 2016. Captured specimens were transferred individually into Eppendorf tubes with 90% ethanol. The sand fly heads and genitalia were removed and were mounted in Euparal after successive different baths. Specimen identification was determined based on the morphology of the cibarium, pharynx, and/or male genitalia or female spermathecae. A total of 416 sand flies (125 females, 283 males) belonging to four genera were collected and 10 sand fly species were identified: Sergentomyia silvatica, Se. barraudi, Se. hivernus, Se. bailyi, Phlebotomus mascomai, Ph. stantoni, Ph. yunshengensis, Ph. betisi, Chinius junlianensis, Idiophlebotomus longiforceps. The Sergentomyia genus prevailed (79.7% of the collected sand flies), followed by the Phlebotomus genus (13.7%), the Chinius genus (6.1%), and the Idiophlebotomus genus (0.8%). Besides these well-defined taxa, five specimens, named sp1, showed unknown morphological characteristics, requiring further study. The majority of sand flies were collected in rock caves suggesting the cavernicolous character of the species in the Quang Ninh province. However, specimens were also collected in intra and peridomiciliary sites in which Ph. stantoni and Se. hivernus were found as the main species. It is worth noting that two Ph. stantoni were found in the house of a patient affected by Leishmania.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Rosana Silva Lana ◽  
Érika Monteiro Michalsky ◽  
Consuelo Latorre Fortes-Dias ◽  
João Carlos França-Silva ◽  
Fabiana de Oliveira Lara-Silva ◽  
...  

In the New World, the leishmaniases are primarily transmitted to humans through the bites ofLeishmania-infectedLutzomyia(Diptera: Psychodidae) phlebotomine sand flies. Any or both of two basic clinical forms of these diseases are endemic to several cities in Brazil—the American cutaneous leishmaniasis (ACL) and the American visceral leishmaniasis (AVL). The present study was conducted in the urban area of a small-sized Brazilian municipality (Jaboticatubas), in which three cases of AVL and nine of ACL have been reported in the last five years. Jaboticatubas is an important tourism hub, as it includes a major part of the Serra do Cipó National Park. Currently, no local data is available on the entomological fauna or circulatingLeishmania. During the one-year period of this study, we captured 3,104 phlebotomine sand flies belonging to sixteenLutzomyiaspecies. In addition to identifying incriminated or suspected vectors of ACL with DNA of the etiological agent of AVL and vice versa, we also detectedLeishmaniaDNA in unexpectedLutzomyiaspecies. The expressive presence of vectors and naturalLeishmaniainfection indicates favorable conditions for the spreading of leishmaniases in the vicinity of the Serra do Cipó National Park.


2007 ◽  
Vol 32 (2) ◽  
pp. 302 ◽  
Author(s):  
D.F. Hoel ◽  
J.F. Butler ◽  
E. Y. Fawaz ◽  
N. Watany ◽  
S.S. El-Hossary ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document