scholarly journals Active Ecological Restoration of Cold-Water Corals: Techniques, Challenges, Costs and Future Directions

2021 ◽  
Vol 8 ◽  
Author(s):  
Maria Montseny ◽  
Cristina Linares ◽  
Marina Carreiro-Silva ◽  
Lea-Anne Henry ◽  
David Billett ◽  
...  

Cold-water coral (CWC) habitats dwell on continental shelves, slopes, seamounts, and ridge systems around the world’s oceans from 50 to 4000 m depth, providing heterogeneous habitats which support a myriad of associated fauna. These highly diverse ecosystems are threatened by human stressors such as fishing activities, gas and oil exploitation, and climate change. Since their life-history traits such as long lifespan and slow growth rates make CWCs very vulnerable to potential threats, it is a foremost challenge to explore the viability of restoration actions to enhance and speed up their recovery. In contrast to terrestrial and shallow-water marine ecosystems, ecological restoration in deep marine environments has received minimal attention. This review, by means of a systematic literature search, aims to identify CWC restoration challenges, assess the most suitable techniques to restore them, and discuss future perspectives. Outcomes from the few restoration actions performed to date on CWCs, which have lasted between 1 to 4 years, provide evidence of the feasibility of coral transplantation and artificial reef deployments. Scientific efforts should focus on testing novel and creative restoration techniques, especially to scale up to the spatial and temporal scales of impacts. There is still a general lack of knowledge about the biological, ecological and habitat characteristics of CWC species exploration of which would aid the development of effective restoration measures. To ensure the long-term viability and success of any restoration action it is essential to include holistic and long-term monitoring programs, and to ideally combine active restoration with natural spontaneous regeneration (i.e., passive restoration) strategies such as the implementation of deep-sea marine protected areas (MPAs). We conclude that a combination of passive and active restoration approaches with involvement of local society would be the best optimal option to achieve and ensure CWC restoration success.

2017 ◽  
Vol 4 (2) ◽  
Author(s):  
Dionatan Gerber ◽  
Tatiene Yumi Kiwara ◽  
Patricia Ramos de Souza ◽  
Marcos Lubke ◽  
Edgar de Souza Vismara ◽  
...  

The establishment of canopy and the following elimination of invasive exotic grasses are among the main barriers towards the restoration of subtropical forests. We compared canopy initial cover and biological invasion by exotic grasses in different restoration technologies, up to 5-y, in Paraná State, southern Brazil. We tested three treatments in four randomized blocks as follows: T1 – passive restoration; T2 – nucleation; and T3 – high diversity plantation. We sampled 117 points per plot (54 x 40 m). We registered the presence or absence of invasive grasses cover and canopy cover percentage (using a spherical crown densiometer). The high density of fast-growing trees plus dense crowns was probably responsible for the highest shadowing and faster elimination of grasses in the plantation, while nucleation and the passive restoration showed the lowest canopy cover followed by the highest invasion by grasses. We recommend managers to use plantations to make a fast covering, although with higher inputs, or use nucleation in a long-term shadowing basis project.


Author(s):  
Gilles Duruflé ◽  
Thomas Hellmann ◽  
Karen Wilson

This chapter examines the challenge for entrepreneurial companies of going beyond the start-up phase and growing into large successful companies. We examine the long-term financing of these so-called scale-up companies, focusing on the United States, Europe, and Canada. The chapter first provides a conceptual framework for understanding the challenges of financing scale-ups. It emphasizes the need for investors with deep pockets, for smart money, for investor networks, and for patient money. It then shows some data about the various aspects of financing scale-ups in the United States, Europe, and Canada, showing how Europe and Canada are lagging behind the US relatively more at the scale-up than the start-up stage. Finally, the chapter raises the question of long-term public policies for supporting the creation of a better scale-up environment.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kari Dyb ◽  
Gro Rosvold Berntsen ◽  
Lisbeth Kvam

Abstract Background Technology support and person-centred care are the new mantra for healthcare programmes in Western societies. While few argue with the overarching philosophy of person-centred care or the potential of information technologies, there is less agreement on how to make them a reality in everyday clinical practice. In this paper, we investigate how individual healthcare providers at four innovation arenas in Scandinavia experienced the implementation of technology-supported person-centred care for people with long-term care needs by using the new analytical framework nonadoption, abandonment, and challenges to the scale-up, spread, and sustainability (NASSS) of health and care technologies. We also discuss the usability and sensitivity of the NASSS framework for those seeking to plan, implement, and evaluate technology-supported healthcare programmes. This study is part of an interdisciplinary research and development project called Patients and Professionals in Partnership (2016–2020). It originates at one of ten work packages in this project. Method The main data consist of ethnographic field observations at the four innovation arenas and 29 interviews with involved healthcare providers. To ensure continuous updates and status on work in the four innovation arenas, we have also participated in a total of six annual network meetings arranged by the project. Results While the NASSS framework is very useful for identifying and communicating challenges with the adoption and spread of technology-supported person-centred care initiatives, we found it less sensitive towards capturing the dedication, enthusiasm, and passion for care transformation that we found among the healthcare providers in our study. When it comes to technology-supported person-centred care, the point of no return has passed for the involved healthcare providers. To them, it is already a definite part of the future of healthcare services. How to overcome barriers and obstacles is pragmatically approached. Conclusion Increased knowledge about healthcare providers and their visions as potential assets for care transformation might be critical for those seeking to plan, implement, and evaluate technology-supported healthcare programmes.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Michelle C. Stanton ◽  
Patrick Kalonde ◽  
Kennedy Zembere ◽  
Remy Hoek Spaans ◽  
Christopher M. Jones

Abstract Background Spatio-temporal trends in mosquito-borne diseases are driven by the locations and seasonality of larval habitat. One method of disease control is to decrease the mosquito population by modifying larval habitat, known as larval source management (LSM). In malaria control, LSM is currently considered impractical in rural areas due to perceived difficulties in identifying target areas. High resolution drone mapping is being considered as a practical solution to address this barrier. In this paper, the authors’ experiences of drone-led larval habitat identification in Malawi were used to assess the feasibility of this approach. Methods Drone mapping and larval surveys were conducted in Kasungu district, Malawi between 2018 and 2020. Water bodies and aquatic vegetation were identified in the imagery using manual methods and geographical object-based image analysis (GeoOBIA) and the performances of the classifications were compared. Further, observations were documented on the practical aspects of capturing drone imagery for informing malaria control including cost, time, computing, and skills requirements. Larval sampling sites were characterized by biotic factors visible in drone imagery and generalized linear mixed models were used to determine their association with larval presence. Results Imagery covering an area of 8.9 km2 across eight sites was captured. Larval habitat characteristics were successfully identified using GeoOBIA on images captured by a standard camera (median accuracy = 98%) with no notable improvement observed after incorporating data from a near-infrared sensor. This approach however required greater processing time and technical skills compared to manual identification. Larval samples captured from 326 sites confirmed that drone-captured characteristics, including aquatic vegetation presence and type, were significantly associated with larval presence. Conclusions This study demonstrates the potential for drone-acquired imagery to support mosquito larval habitat identification in rural, malaria-endemic areas, although technical challenges were identified which may hinder the scale up of this approach. Potential solutions have however been identified, including strengthening linkages with the flourishing drone industry in countries such as Malawi. Further consultations are therefore needed between experts in the fields of drones, image analysis and vector control are needed to develop more detailed guidance on how this technology can be most effectively exploited in malaria control.


2010 ◽  
Vol 5 (3) ◽  
pp. 227-230 ◽  
Author(s):  
Paul H. Gobster

What does ecological restoration mean in an urban context? More than half of the world’s population now lives in cities, and in response to the dynamic patterns of urbanization, a growing number of ecologists, land managers, and volunteers are focusing their efforts in and around cities to restore remnants of natural diversity (Ingram 2008). Ecological restoration is still a quite youthful field, yet many scientists and practitioners hold a relatively fixed set of criteria for what defines a successful restoration project, irrespective of where sites are located. Among the criteria commonly stated, sites should be composed of indigenous species, have a structure and diversity characteristic of currently undisturbed or historically documented “reference” sites, and be maintained through ecological processes such as fire that ensure long-term sustainability with minimal human assistance (Ruiz-Jaén and Aide 2005; SER International 2004). Application of these criteria has led to many ecologically successful restorations, but some ecologists in the field have begun to question whether the same standards can be realistically applied to sites such as those within urban areas that have been radically altered by past human activity (e.g., Martínez and López-Barerra 2008) or are being influenced by novel conditions that result in unpredictable trajectories (Choi 2007). Perhaps more significantly, it is becoming increasingly recognized that the broader viability of restoration projects, especially those in urban areas, hinges on how socially successful they are in gaining public acceptance for restoration activities and practices, building constituencies to assist with implementation and maintenance, and addressing a broader set of sustainability goals that reach beyond the protection of native biodiversity (e.g., Choi et al. 2008; Hobbs 2007; Rosenzweig 2003).


2021 ◽  
Author(s):  
Josh Wolstenholme ◽  
Christopher Skinner ◽  
David Milan ◽  
Daniel Parsons

<p>Natural flood management (NFM) promotes the sustainable enhancement of natural fluvial processes to reduce flooding (SEPA, 2015; Wilkinson et al., 2019), and is increasingly popular for use by community groups, contractors and governments (Kay et al., 2019). Reintroduction of wood to a river channel is a popular form of NFM often achieved through seeding natural logjams, or with an emphasis on engineering through installing woody dams (WDs). WDs are currently installed or being installed in catchments in an effort to reduce flood risk, through hydrograph attenuation, increase biodiversity and improve geomorphic heterogeneity (Wenzel et al., 2014; Burgess-Gamble et al., 2017; Grabowski et al., 2019). A further objective is to emulate the effect of natural wood found in river channels by partially, or completely, blocking the channel to accelerate the recruitment of natural wood as part of the natural wood cycle (Addy & Wilkinson, 2016).</p><p>There is a growing body of evidence supporting the benefits of NFM, however, the hydrogeomorphic effects of WDs are less well understood (Dadson et al., 2017). There is little scientific underpinning concerning the long-term impact of these features upon hydrogeomorphology at reach and catchment-scales. Very few numerically based studies consider the influence of sediment transport on WDs, and how changes in local bed morphology influence their effectiveness. Most NFM research to date has focused upon modelling the effectiveness of local NFM measures in small catchments (<10 km<sup>2</sup>) (Dadson et al., 2017), with less work evident at larger spatial and temporal scales (Kay et al., 2019; Wilkinson et al., 2019).</p><p>There is a need for a verified tool that is able to represent WDs accounting for geomorphic processes and interactions between the dams and morphodynamics, different design specifications of dams, and changing efficacy due to geomorphic evolution. We present the new CAESAR-Lisflood (Coulthard et al., 2013) “Working with Natural Processes” toolkit, capable of representing WDs across a digital experimental environment. Global sensitivity testing was conducted using the Morris method (Morris, 1991) to assess the sensitivity of five aspects of the toolkit, and their potentially influences on geomorphology and flood risk reduction.</p>


2016 ◽  
Vol 107 ◽  
pp. 67-75 ◽  
Author(s):  
Henri Jokinen ◽  
Håkan Wennhage ◽  
Victoria Ollus ◽  
Eero Aro ◽  
Alf Norkko

2017 ◽  
Vol 98 (6) ◽  
pp. 1217-1234 ◽  
Author(s):  
B. Wolf ◽  
C. Chwala ◽  
B. Fersch ◽  
J. Garvelmann ◽  
W. Junkermann ◽  
...  

Abstract ScaleX is a collaborative measurement campaign, collocated with a long-term environmental observatory of the German Terrestrial Environmental Observatories (TERENO) network in the mountainous terrain of the Bavarian Prealps, Germany. The aims of both TERENO and ScaleX include the measurement and modeling of land surface–atmosphere interactions of energy, water, and greenhouse gases. ScaleX is motivated by the recognition that long-term intensive observational research over years or decades must be based on well-proven, mostly automated measurement systems, concentrated in a small number of locations. In contrast, short-term intensive campaigns offer the opportunity to assess spatial distributions and gradients by concentrated instrument deployments, and by mobile sensors (ground and/or airborne) to obtain transects and three-dimensional patterns of atmospheric, surface, or soil variables and processes. Moreover, intensive campaigns are ideal proving grounds for innovative instruments, methods, and techniques to measure quantities that cannot (yet) be automated or deployed over long time periods. ScaleX is distinctive in its design, which combines the benefits of a long-term environmental-monitoring approach (TERENO) with the versatility and innovative power of a series of intensive campaigns, to bridge across a wide span of spatial and temporal scales. This contribution presents the concept and first data products of ScaleX-2015, which occurred in June–July 2015. The second installment of ScaleX took place in summer 2016 and periodic further ScaleX campaigns are planned throughout the lifetime of TERENO. This paper calls for collaboration in future ScaleX campaigns or to use our data in modelling studies. It is also an invitation to emulate the ScaleX concept at other long-term observatories.


2021 ◽  
Vol 8 ◽  
Author(s):  
Laurence H. De Clippele ◽  
Denise Risch

This study compares the noise levels at the cold-water coral Tisler reef, before and after the closure of the border between Norway and Sweden, which occurred as a direct result of the COVID-19 pandemic. The Tisler reef is a marine protected area located under a ferry “highway” that connects Norway and Sweden. Cold-water coral reefs are recognised as being important hotspots of both biodiversity and biomass, they function as breeding and nursing grounds for commercially important fish and are essential in providing ecosystem functions. Whilst studies have shown that fishery, ocean warming, and acidification threaten them, the effects of noise pollution on cold-water coral reefs remains unstudied. To study the severity of noise pollution at the Tisler reef, a long-term acoustic recorder was deployed from 29 January 2020 until 26 May 2020. From 15 March COVID-19 lockdown measures stopped passenger vessel traffic between Norway and Sweden. This study found that the overall noise levels were significantly lower after border closure, due to reduced ferry traffic, wind speeds, and sea level height. When comparing the median hourly noise levels of before vs. after border closure, this study measured a significant reduction in the 63–125 Hz 1/3 octave band noise levels of 8.94 ± 0.88 (MAD) dB during the day (07:00:00–19:59:59) and 1.94 ± 0.11 (MAD) dB during the night (20:00:00–06:59:59). Since there was no ferry traffic during the night, the drop in noise levels at night was likely driven by seasonal changes, i.e., the reduction in wind speed and sea level height when transitioning from winter to spring. Taking into account this seasonal effect, it can be deduced that the COVID-19 border closure reduced the noise levels in the 63–125 Hz 1/3 octave bands at the Tisler reef by 7.0 ± 0.99 (MAD) dB during the day. While the contribution of, and changes in biological, weather-related and geophysical sound sources remain to be assessed in more detail, understanding the extent of anthropogenic noise pollution at the Tisler cold-water coral reef is critical to guide effective management to ensure the long-term health and conservation of its ecosystem functions.


Sign in / Sign up

Export Citation Format

Share Document