scholarly journals Modulation of Gilthead Sea Bream Gut Microbiota by a Bioactive Egg White Hydrolysate: Interactions Between Bacteria and Host Lipid Metabolism

2021 ◽  
Vol 8 ◽  
Author(s):  
Fernando Naya-Català ◽  
Giulia A. Wiggers ◽  
M. Carla Piazzon ◽  
Manuel I. López-Martínez ◽  
Itziar Estensoro ◽  
...  

This study aimed to highlight the relationship between diet, animal performance and mucosal adherent gut microbiota (anterior intestine) in fish fed plant-based diets supplemented with an egg white hydrolysate (EWH) with antioxidant and anti-obesogenic activity in obese rats. The feeding trial with juveniles of gilthead sea bream (Sparus aurata) lasted 8 weeks. Fish were fed near to visual satiety with a fish meal (FM)/fish oil (FO) based diet (CTRL) or a plant-based diet with/without EWH supplementation. Specific growth rate decreased gradually from 2.16% in CTRL fish to 1.88% in EWH fish due to a reduced feed intake, and a slight impairment of feed conversion ratio. Plant-based diets feeding triggered a hyperplasic inflammation of the anterior intestine regardless of EWH supplementation. However, EWH ameliorated the goblet cell depletion, and the hepatic and intestinal lipid accumulation induced by FM/FO replacement. Illumina sequencing of gut mucosal microbiota yielded a mean of 136,252 reads per sample assigned to 2,117 OTUs at 97% identity threshold. The bacterial diversity was similar in all groups, but a significantly lower richness was found in EWH fish. At the phylum level, Proteobacteria reached the highest proportion in CTRL and EWH fish, whereas Firmicutes were decreased and Actinobacteria increased with the FM/FO replacement. The proportion of Actinobacteria was restored by dietary EWH supplementation, which also triggered a highest amount of Bacteroidetes and Spirochaetes. At a closer look, a widespread presence of Lactobacillales among groups was found. Otherwise, polysaccharide hydrolases secretors represented by Corynebacterium and Nocardioides were increased by the FM/FO replacement, whereas the mucin-degrading Streptococcus was only raised in fish fed the plant-based diet without EWH. In addition, in EWH fish, a higher abundance of Propionibacterium was related to an increased concentration of intestinal propionate. The antagonism of gut health-promoting propionate with cholesterol could explain the inferred underrepresentation of primary bile acid biosynthesis and steroid degradation pathways in the EWH fish microbiota. Altogether, these results reinforce the central role of gut microbiota in the regulation of host metabolism and lipid metabolism in particular, suggesting a role of the bioactive EWH peptides as an anti-obesity and/or satiety factor in fish.

Aquaculture ◽  
2007 ◽  
Vol 267 (1-4) ◽  
pp. 188-198 ◽  
Author(s):  
Núria Montserrat ◽  
Pedro Gómez-Requeni ◽  
Giovanni Bellini ◽  
Encarnación Capilla ◽  
Jaume Pérez-Sánchez ◽  
...  

Animals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 144 ◽  
Author(s):  
Alessandra Roncarati ◽  
Roberto Cappuccinelli ◽  
Marina Meligrana ◽  
Roberto Anedda ◽  
Sergio Uzzau ◽  
...  

Insect meal derived from chironomid larvae and collected from aquatic environments was included in the feed of gilthead sea bream juveniles (75 ± 1.1 g) in a growth trial of 90 days. Three feeds, which were namely one control (L1) and two experimental diets (L2, L3), were analyzed and formulated as isonitrogenous (45%) and isolipidic (13%). In L1, the protein source was mainly soybean meal (32%), followed by fish meal (20%), wheat meal (20%), gluten corn (17%), and hemoglobin (11%). In L2, the proportion of soybean meal was increased (33.5%), followed by gluten corn (21%), wheat meal (14%), and hemoglobin (11%), whereas the fish meal source was reduced (15%) due to the inclusion of chironomids (5%). In L3, the proportion of fish meal was further reduced (8%) and that of chironomid meal was increased to 10% of the protein source. The L2 and L3 groups showed similar growth performances with respect to the L1 group. The feed conversion rate was favorable in all the groups, ranging from 1.18 (L1) to 1.22 (L3). Survival rates varied from 93.62% (L3) to 94.31% (L1). Feed palatability showed similar results for all diets. Although the inclusion of chironomid meal was used in small quantities, our results suggest a significant advantage in replacing 50% of the fish meal with the chironomid meal for growing gilthead sea bream fishes.


2017 ◽  
Vol 117 (3) ◽  
pp. 351-363 ◽  
Author(s):  
Enric Gisbert ◽  
Karl B. Andree ◽  
José C. Quintela ◽  
Josep A. Calduch-Giner ◽  
Ignacio R. Ipharraguerre ◽  
...  

AbstractAn olive oil bioactive extract (OBE) rich in bioactive compounds like polyphenols, triterpenic acids, long-chain fatty alcohols, unsaturated hydrocarbons, tocopherols and sterols was tested (0, 0·08, 0·17, 0·42 and 0·73 % OBE) in diets fed to sea bream (Sparus aurata) (initial weight: 5·4 (sd 1·2) g) during a 90-d trial (four replicates). Fish fed diets containing 0·17 and 0·42 % OBE were 5 % heavier (61·1 (sd 1·6) and 60·3 (sd 1·1) g, respectively) than those of the control group (57·0 (sd 0·7) g), although feed conversion ratio and specific feed intake did not vary. There were no differences in lipid peroxidation (LPO) levels, catalase, glutathione reductase and glutathione S-transferase activities in the intestine and liver, although there was a tendency of lower intestinal and hepatic LPO levels in fish fed OBE diets. No differences in villus size were found among treatments, whereas goblet cell density in the control group was on average14·3 % lower than in fish fed OBE diets. The transcriptomic profiling of intestinal markers, covering different biological functions like (i) cell differentiation and proliferation, (ii) intestinal permeability, (iii) enterocyte mass and epithelial damage, (iv) IL and cytokines, (v) pathogen recognition receptors and (vi) mitochondria function, indicated that among the eighty-eight evaluated genes, twenty-nine were differentially expressed (0·17 % OBE diet), suggesting that the additive has the potential of improving the condition and defensive role of the intestine by enhancing the maturation of enterocytes, reducing oxidative stress, improving the integrity of the intestinal epithelium and enhancing the intestinal innate immune function, as gene expression data indicated.


2013 ◽  
Vol 19 (5) ◽  
pp. 709-720 ◽  
Author(s):  
Eva E. Rufino-Palomares ◽  
Fernando J. Reyes-Zurita ◽  
Leticia García-Salguero ◽  
Juan Peragón ◽  
Manuel de la Higuera ◽  
...  

Aquaculture ◽  
2007 ◽  
Vol 262 (2-4) ◽  
pp. 470-480 ◽  
Author(s):  
A. Ibarz ◽  
M. Beltrán ◽  
J. Fernández-Borràs ◽  
M.A. Gallardo ◽  
J. Sánchez ◽  
...  

2018 ◽  
Vol 49 (3) ◽  
pp. 1347-1356 ◽  
Author(s):  
Cláudia Reis Serra ◽  
Francisco Magalhães Júnior ◽  
Ana Couto ◽  
Aires Oliva-Teles ◽  
Paula Enes

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10430
Author(s):  
David Huyben ◽  
Simona Rimoldi ◽  
Chiara Ceccotti ◽  
Daniel Montero ◽  
Monica Betancor ◽  
...  

Background In the last two decades, research has focused on testing cheaper and sustainable alternatives to fish oil (FO), such as vegetable oils (VO), in aquafeeds. However, FO cannot be entirely replaced by VOs due to their lack of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA), particularly eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic (DHA; 22:6n-3) acids. The oilseed plant, Camelina sativa, may have a higher potential to replace FO since it can contains up to 40% of the omega-3 precursors α-linolenic acid (ALA; 18:3n-3) and linoleic acid (LA; 18:2n-6). Methods A 90-day feeding trial was conducted with 600 gilthead sea bream (Sparus aurata) of 32.92 ±  0.31 g mean initial weight fed three diets that replaced 20%, 40% and 60% of FO with CO and a control diet of FO. Fish were distributed into triplicate tanks per diet and with 50 fish each in a flow-through open marine system. Growth performance and fatty acid profiles of the fillet were analysed. The Illumina MiSeq platform for sequencing of 16S rRNA gene and Mothur pipeline were used to identify bacteria in the faeces, gut mucosa and diets in addition to metagenomic analysis by PICRUSt. Results and Conclusions The feed conversion rate and specific growth rate were not affected by diet, although final weight was significantly lower for fish fed the 60% CO diet. Reduced final weight was attributed to lower levels of EPA and DHA in the CO ingredient. The lipid profile of fillets were similar between the dietary groups in regards to total saturated, monounsaturated, PUFA (n-3 and n-6), and the ratio of n-3/n-6. Levels of EPA and DHA in the fillet reflected the progressive replacement of FO by CO in the diet and the EPA was significantly lower in fish fed the 60% CO diet, while ALA was increased. Alpha and beta-diversities of gut bacteria in both the faeces and mucosa were not affected by any dietary treatment, although a few indicator bacteria, such as Corynebacterium and Rhodospirillales, were associated with the 60% CO diet. However, lower abundance of lactic acid bacteria, specifically Lactobacillus, in the gut of fish fed the 60% CO diet may indicate a potential negative effect on gut microbiota. PICRUSt analysis revealed similar predictive functions of bacteria in the faeces and mucosa, although a higher abundance of Corynebacterium in the mucosa of fish fed 60% CO diet increased the KEGG pathway of fatty acid synthesis and may act to compensate for the lack of fatty acids in the diet. In summary, this study demonstrated that up to 40% of FO can be replaced with CO without negative effects on growth performance, fillet composition and gut microbiota of gilthead sea bream.


2018 ◽  
Vol 257 ◽  
pp. 177-183 ◽  
Author(s):  
Juan Miguel Mancera ◽  
Gonzalo Martínez-Rodríguez ◽  
Arleta Krystyna Skrzynska ◽  
Juan Antonio Martos-Sitcha

Sign in / Sign up

Export Citation Format

Share Document