scholarly journals Seismic Performance of Ni-Ti SMA Wires Equipped in the Spatial Skeletal Structure

2021 ◽  
Vol 8 ◽  
Author(s):  
Yang Liu ◽  
Tao Yang ◽  
Binbin Li ◽  
Bo Liu ◽  
Wentao Wang ◽  
...  

Nickel Titanium (Ni-Ti) Shape Memory Alloy (SMA) can be used to limit response of structure during external disturbances such as large seismic events. This paper presents a seismic performance study of Ni-Ti SMA wires equipped in the spatial skeletal structure. First, an improved Graesser-Cozzarelli (G-C) numerical constitutive model of the Austenitic phase of NiTi SMA wire is established. By contrast, the model based on uniaxial cyclic loading experimental tests is demonstrated as feasibility and validity. Next, a method consisting of a three-layer steel spatial skeletal structure model equipped with SMA wires is employed for simulation and experimental tests. According to the obtained constitutive numerical model, the simulation program of vibration control is written to simulate the effect of vibration control of seismic EL-centro wave. Furthermore, a shaking table experimental test was designed to verify the vibration control effect under the same action of seismic EL-centro wave. By comparison of the results of the numerical simulation and shaking table test, dynamic responses of the displacement and acceleration for different floors with control and without control was concluded. The superior superelastic properties of SMA wires used in passive control are investigated and the correctness of the constitutive numerical model are verified as well. The results show that such a comprehensive analysis integrates seismic-resistant behavior of Ni-Ti SMA wires in this type of structure. Besides, proposed method has broad application prospects to address the issues in passive control field of building structures.

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Shi Yan ◽  
Jian Niu ◽  
Peng Mao ◽  
Gangbing Song ◽  
Wei Wang

Mechanical properties of shape memory alloy (SMA) wires were experimentally researched in this paper, and an energy dissipater made of SMA wire cable was designed and applied in a steel frame structure model by using superelasticity characteristics of SMAs to passively reduce dynamic responses of the steel frame structure under seismic load. For the characteristics of large relative displacements between the stories of the steel frame structure on both diagonal ends and the consideration of initial prestrain effects of the SMA cables, three kinds of the whole control, the part control, and no control of the shaking table tests and numerical simulations were carried, respectively. Through the results of the shaking table test and numerical simulation analysis, the dynamic responses such as the maximum displacement, velocity, and acceleration at the top layer of the steel frame structure applied with SMA cables are significantly decreased compared with the no control case. However, considering the premise of both effectiveness and efficiency, the part control effect is superior to the whole control. In many cases, it can meet the control requirement of reducing the maximum displacement and acceleration, while the superelasticity of SMAs can be sufficiently played, realizing the passive control purposes of the steel frame structure based on the energy dispassion through the application of the SMA cables. The proposed method has broad application prospects in the passive control field of building structures.


2015 ◽  
Vol 104 (1) ◽  
pp. 1-8
Author(s):  
Kenichi Tahara ◽  
Yasuhito Sasaki ◽  
Yukihiro Sato ◽  
Satoshi Sasaki ◽  
Shojiro Motoyui

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Haibo Wang ◽  
Yongfeng Cheng ◽  
Zhicheng Lu ◽  
Zhubing Zhu ◽  
Shujun Zhang

Pillar electrical equipment is an important part of substations. The application of composite materials in pillar equipment can facilitate the improvement of the seismic performance of electrical equipment. In this paper, the test of elastic modulus and bending rigidity was conducted for individual composite elements in insulators and arresters, and the calculation formula for bending rigidity at the composite flange cementing connections was put forward. The numerical simulation model for the earthquake simulation shaking table test of ±1,100 kV composite pillar insulators was established, in which the bending rigidity value for the flange cementing part was obtained by the test or calculation formula. The numerical simulation results were compared with the earthquake simulation shaking table test results, the dynamic characteristics and seismic response of the model were compared, respectively, the validity of the proposed calculation formula for flange bending rigidity of composite cementing parts was verified, and a convenient and effective means was provided for calculating the seismic performance of composite electrical equipment.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Shujin Li ◽  
Cai Wu ◽  
Fan Kong

A building developed by Wuhan Shimao Group in Wuhan, China, is a high-rise residence with 56 stories near the Yangtze River. The building is a reinforced concrete structure, featuring with a nonregular T-type plane and a height 179.6 m, which is out of the restrictions specified by the China Technical Specification for Concrete Structures of Tall Building (JGJ3-2010). To investigate its seismic performance, a shaking table test with a 1/30 scale model is carried out in Structural Laboratory in Wuhan University of Technology. The dynamic characteristics and the responses of the model subject to different seismic intensities are investigated via the analyzing of shaking table test data and the observed cracking pattern of the scaled model. Finite element analysis of the shaking table model is also established, and the results are coincident well with the test. An autoregressive method is also presented to identify the damage of the structure after suffering from different waves, and the results coincide well with the test and numerical simulation. The shaking table model test, numerical analysis, and damage identification prove that this building is well designed and can be safely put into use. Suggestions and measures to improve the seismic performance of structures are also presented.


2012 ◽  
Vol 166-169 ◽  
pp. 730-733 ◽  
Author(s):  
Fei Zhu ◽  
Feng Lai Wang ◽  
Xu Jie Sun ◽  
Y. Zhao

Unreinforced stone masonry pagodas have great cultural value and should be detailed investigation its mechanical properties. These buildings were not designed to resist earthquakes in ancient China, at least not in the way of current methods. The objectives of this research were to understand the dynamic behavior of unreinforced stone masonry pagoda and its seismic performance. To accomplish these, a 1/12 scale model of China Dinosaurs Pagoda was constructed and tested on shaking table. The octangle model height is 3.96m, with aspect ratio of height to width is 2.93, both parameters exceed the stipulated limit of Code for Seismic Design of Building. The model built with the stones and motars similar to the prototype materials and the arrangements. Its dynamic behavior and seismic performance were tested on the shaking table towards the free vibration and three earthquake waves. The experimental program adopted in the research is explained in this paper.


2016 ◽  
Vol 20 (1) ◽  
pp. 4-17 ◽  
Author(s):  
Liang Lu ◽  
Xia Liu ◽  
Junjie Chen ◽  
Xilin Lu

A controlled rocking reinforced concrete frame is a new type of vibration control structure system that uses resilient rocking columns and joints. The effects of earthquakes on this type of structure are reduced by weakening the overall stiffness, whereas the lateral displacement is controlled by the energy-dissipation dampers introduced into the structure. Two tests were performed for research: the reversed cyclic loading test and shaking table test. Two single-span single-story controlled rocking reinforced concrete frames were designed for reversed cyclic loading tests. These tests (i.e. a column-base joint stiffness test, beam-column joint stiffness test, and frame stiffness test) were performed under different conditions. The mechanical analysis model of the rocking joints was derived from the test results. With the parameters obtained from the cyclic tests, a numerical simulation method that established the analytical model of the controlled rocking reinforced concrete frame using the program ABAQUS is proposed, and the dynamic time-history analysis results of the controlled rocking reinforced concrete frame and of the conventional approach are compared to investigate the vibration control effect and seismic performance of the controlled rocking reinforced concrete frame. In addition, the inter-story drift could be effectively controlled by adding metallic dampers, and the shaking table test models of the controlled rocking reinforced concrete frame with metallic dampers were designed and constructed. The comparison of the results of the numerical analysis and the shaking table test demonstrates that the model building of the controlled rocking reinforced concrete frame structure is efficient and that the controlled rocking reinforced concrete frame exhibits an excellent seismic performance.


2010 ◽  
Vol 163-167 ◽  
pp. 1281-1285
Author(s):  
Bin Wang ◽  
Huan Jun Jiang ◽  
Jian Bao Li ◽  
Wen Sheng Lu ◽  
Xi Lin Lu

The reinforced concrete (RC) frame-tube structure considered in the study has two towers with lapping transfer columns. The lapping transfer columns, considering aesthetic requirement in elevation, lead to a complex vertical force transfer system. The large irregularity in elevation, according to Chinese code, necessitates a detailed study. A 1/15-scaled model of the high-rise building was tested on a shaking table to evaluate its seismic performance. The model was subjected to earthquake inputs representing frequent, basic, rare, and extremly rare earthquakes. The results of shaking table test in terms of the global and local responses as well as the dynamic properties are presented. The tests demonstrate that the designed structural system satisfies the pre-defined performance objectives and the lapping transfer columns have good seismic peformance. To better control seismic damages of the building, some suggestions for improving the design of this structure are also put forward at last.


Sign in / Sign up

Export Citation Format

Share Document