scholarly journals Inhaled Gases as Therapies for Post–Cardiac Arrest Syndrome: A Narrative Review of Recent Developments

2021 ◽  
Vol 7 ◽  
Author(s):  
Kei Hayashida ◽  
Santiago J. Miyara ◽  
Koichiro Shinozaki ◽  
Ryosuke Takegawa ◽  
Tai Yin ◽  
...  

Despite recent advances in the management of post–cardiac arrest syndrome (PCAS), the survival rate, without neurologic sequelae after resuscitation, remains very low. Whole-body ischemia, followed by reperfusion after cardiac arrest (CA), contributes to PCAS, for which established pharmaceutical interventions are still lacking. It has been shown that a number of different processes can ultimately lead to neuronal injury and cell death in the pathology of PCAS, including vasoconstriction, protein modification, impaired mitochondrial respiration, cell death signaling, inflammation, and excessive oxidative stress. Recently, the pathophysiological effects of inhaled gases including nitric oxide (NO), molecular hydrogen (H2), and xenon (Xe) have attracted much attention. Herein, we summarize recent literature on the application of NO, H2, and Xe for treating PCAS. Recent basic and clinical research has shown that these gases have cytoprotective effects against PCAS. Nevertheless, there are likely differences in the mechanisms by which these gases modulate reperfusion injury after CA. Further preclinical and clinical studies examining the combinations of standard post-CA care and inhaled gas treatment to prevent ischemia–reperfusion injury are warranted to improve outcomes in patients who are being failed by our current therapies.

Circulation ◽  
2021 ◽  
Vol 144 (Suppl_2) ◽  
Author(s):  
Muhammad Shoaib ◽  
Mitsuaki Nishikimi ◽  
Rishabh Choudhary ◽  
Tai Yin ◽  
Kei Hayashida ◽  
...  

Cardiac arrest (CA) is a loss of circulation that curtails the supply of oxygen and non-oxygen metabolites to the whole body resulting in ischemia and death. Subsequent resuscitation is vital for survival, but also causes reperfusion injury. Oxygen deprivation as one arm of ischemia-reperfusion injury and its relationship with death is well-established, but its counterpart, metabolite dysfunction, is overlooked and poorly understood. We have previously shown that many metabolites are not normalized as efficiently or rapidly after resuscitation especially, particularly those that are severely decreased after CA. As such, we hypothesize that appropriate replenishment of certain metabolites is essential for survival. Lysophosphatidylcholine (LPC), an important family of phospholipids, is an example of such non-oxygen metabolites required post-CA. With multifactorial roles for maintaining homeostasis, such as acting as an energy substrate, maintaining membrane integrity, and functioning in inter- and intra-cellular signaling, decreased levels of LPC post-CA disrupts the various physiologic responsibilities resulting in profound systemic effects causing cellular and organ system injury. In this analysis, 1) phospholipid screening using HPLS-MS on plasma samples obtained from asphyxial-CA rats and human CA patients shows that LPC significantly decreases post-CA, especially during the reperfusion phase, and is strongly correlated with the duration of preceding CA and poor neurological/survival outcomes, and 2) individual supplementation of three species of LPC (LPC 18:0, LPC 18:1, and LPC 22:6) following resuscitation after 10 and 12 min rat CA helps improve survival and brain function as compared with vehicle. Overall, our study highlights that LPC is an essential, non-oxygen metabolite that is necessary to help promote survival after CA in rats that has therapeutic potential for human translation.


2021 ◽  
Vol 12 (1) ◽  
pp. 210-217
Author(s):  
Yibiao Wang ◽  
Min Xu

Abstract Background This study aimed to explore the role of miR-380-5p in cerebral ischemia/reperfusion (CIR) injury-induced neuronal cell death and the potential signaling pathway involved. Methodology Human neuroblastoma cell line SH-SY5Y cells were used in this study. Oxygen and glucose deprivation/reperfusion (OGD/R) model was used to mimic ischemia/reperfusion injury. CCK-8 assay and flow cytometry were used to examine cell survival. Quantitative real time PCR (RT-qPCR) assay and Western blotting were used to measure the change of RNA and protein expression, respectively. TargetScan and Luciferase assay was used to confirm the target of miR-380-5p. Malondialdehyde (MDA) superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) were measured using commercial kits. Results miR-380-5p was downregulated in SH-SY5Y cells after OGD/R. Cell viability was increased by miR-380-5p, while cell apoptosis was reduced by miR-380-5p mimics. MDA was reduced by miR-380-5p mimics, while SOD and GSHPx were increased by miR-380-5p. Results of TargetScan and luciferase assay have showed that BACH1 is the direct target of miR-380-5p. Expression of NRF2 was upregulated after OGD/R, but was not affected by miR-380-5p. mRNA expression of HO-1 and NQO1 and ARE activity were increased by miR-380-5p. Overexpression of BACH1 reversed the antioxidant and neuroprotective effects of miR-380-5p. Conclusion miR-380-5p inhibited cell death induced by CIR injury through target BACH1 which also facilitated the activation of NRF2, indicating the antioxidant and neuroprotective effects of miR-380-5p.


2012 ◽  
Vol 32 (8) ◽  
pp. 1865-1874 ◽  
Author(s):  
Shashi Bhushan ◽  
Kazuhisa Kondo ◽  
Benjamin L. Predmore ◽  
Maxim Zlatopolsky ◽  
Adrienne L. King ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document