scholarly journals Red Blood Cell Extracellular Vesicle-Based Drug Delivery: Challenges and Opportunities

2021 ◽  
Vol 8 ◽  
Author(s):  
Wararat Chiangjong ◽  
Pukkavadee Netsirisawan ◽  
Suradej Hongeng ◽  
Somchai Chutipongtanate

Recently, red blood cell-derived extracellular vesicles (RBCEVs) have attracted attention for clinical applications because of their safety and biocompatibility. RBCEVs can escape macrophages through the binding of CD47 to inhibitory receptor signal regulatory protein α. Furthermore, genetic materials such as siRNA, miRNA, mRNA, or single-stranded RNA can be encapsulated within RBCEVs and then released into target cells for precise treatment. However, their side effects, half-lives, target cell specificity, and limited large-scale production under good manufacturing practice remain challenging. In this review, we summarized the biogenesis and composition of RBCEVs, discussed the advantages and disadvantages of RBCEVs for drug delivery compared with synthetic nanovesicles and non-red blood cell-derived EVs, and provided perspectives for overcoming current limitations to the use of RBCEVs for clinical applications.

Author(s):  
Srikanth Reddy Sokkula ◽  
Suresh Gande

Lipid-based drug delivery systems are extensively reported in literature for enhancing the drug solubility, permeability and bioavailability. These systems include   simple oil solutions, coarse, multiple and dry emulsions, complex self-emulsifying, microemulsifying or nanoemulsifying drug delivery systems. Self-emulsifying systems are further classified as self-microemulsifying drug delivery systems (SMEDDS) and self-nanoemulsifying drug delivery systems (SNEDDS) are most prevailing and commercially viable oil based approach for drugs that exhibit low dissolution rate and inadequate absorption. Ever since the progress of SNEDDS, they drew the interest of researchers in order to deal with the challenges of poorly water-soluble drugs. SNEDDS is a proven method for enhancing solubility and bioavailability of lipophilic compounds. Considering the ease of large-scale production and the robustness of SNEDDS, several formulations techniques are commercially available. The stability of SNEDDS can be further enhanced by solidifying liquid SNEDDS. Controlled release and supersaturated SNEDDS received patient compliance with larger drug loading. Presence of biodegradable ingredients and ‘drug-targeting opportunities’ facilitate SNEDDS a clear merit and distinction amongst available solubility enhancement techniques. In this article attempt was made to present an overview of SNEDDS, their mechanism, formulation excipients and potentials of SNEDDS, recent advancements, advantages and disadvantages of SNEDDS formulations. The article also focuses on reviewing the application of SNEDDS in enhancing bioavailability of antihypertensive drugs.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 474 ◽  
Author(s):  
Laura Bayón-Cordero ◽  
Itziar Alkorta ◽  
Lide Arana

Drug delivery systems have opened new avenues to improve the therapeutic effects of already-efficient molecules. Particularly, Solid Lipid Nanoparticles (SLNs) have emerged as promising nanocarriers in cancer therapy. SLNs offer remarkable advantages such as low toxicity, high bioavailability of drugs, versatility of incorporation of hydrophilic and lipophilic drugs, and feasibility of large-scale production. Their molecular structure is crucial to obtain high quality SLN preparations and it is determined by the relationship between the composition and preparation method. Additionally, SLNs allow overcoming several physiological barriers that hinder drug delivery to tumors and are also able to escape multidrug resistance mechanisms, characteristic of cancer cells. Focusing on cell delivery, SLNs can improve drug delivery to target cells by different mechanisms, such as passive mechanisms that take advantage of the tumor microenvironment, active mechanisms by surface modification of SLNs, and codelivery mechanisms. SLNs can incorporate many different drugs and have proven to be effective in different types of tumors (i.e., breast, lung, colon, liver, and brain), corroborating their potential. Finally, it has to be taken into account that there are still some challenges to face in the application of SLNs in anticancer treatments but their possibilities seem to be high.


Author(s):  
S. Pragati ◽  
S. Kuldeep ◽  
S. Ashok ◽  
M. Satheesh

One of the situations in the treatment of disease is the delivery of efficacious medication of appropriate concentration to the site of action in a controlled and continual manner. Nanoparticle represents an important particulate carrier system, developed accordingly. Nanoparticles are solid colloidal particles ranging in size from 1 to 1000 nm and composed of macromolecular material. Nanoparticles could be polymeric or lipidic (SLNs). Industry estimates suggest that approximately 40% of lipophilic drug candidates fail due to solubility and formulation stability issues, prompting significant research activity in advanced lipophile delivery technologies. Solid lipid nanoparticle technology represents a promising new approach to lipophile drug delivery. Solid lipid nanoparticles (SLNs) are important advancement in this area. The bioacceptable and biodegradable nature of SLNs makes them less toxic as compared to polymeric nanoparticles. Supplemented with small size which prolongs the circulation time in blood, feasible scale up for large scale production and absence of burst effect makes them interesting candidates for study. In this present review this new approach is discussed in terms of their preparation, advantages, characterization and special features.


2020 ◽  
Vol 27 (8) ◽  
pp. 698-710
Author(s):  
Roya Cheraghi ◽  
Mahboobeh Nazari ◽  
Mohsen Alipour ◽  
Saman Hosseinkhani

Gene-based therapy largely relies on the vector type that allows a selective and efficient transfection into the target cells with maximum efficacy and minimal toxicity. Although, genes delivered utilizing modified viruses transfect efficiently and precisely, these vectors can cause severe immunological responses and are potentially carcinogenic. A promising method of overcoming this limitation is the use of non-viral vectors, including cationic lipids, polymers, dendrimers, and peptides, which offer potential routes for compacting DNA for targeted delivery. Although non-viral vectors exhibit reduced transfection efficiency compared to their viral counterpart, their superior biocompatibility, non-immunogenicity and potential for large-scale production make them increasingly attractive for modern therapy. There has been a great deal of interest in the development of biomimetic chimeric peptides. Biomimetic chimeric peptides contain different motifs for gene translocation into the nucleus of the desired cells. They have motifs for gene targeting into the desired cell, condense DNA into nanosize particles, translocate the gene into the nucleus and enhance the release of the particle into the cytoplasm. These carriers were developed in recent years. This review highlights the stepwise development of the biomimetic chimeric peptides currently being used in gene delivery.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1288
Author(s):  
Wendy Dong ◽  
Boris Kantor

CRISPR/Cas technology has revolutionized the fields of the genome- and epigenome-editing by supplying unparalleled control over genomic sequences and expression. Lentiviral vector (LV) systems are one of the main delivery vehicles for the CRISPR/Cas systems due to (i) its ability to carry bulky and complex transgenes and (ii) sustain robust and long-term expression in a broad range of dividing and non-dividing cells in vitro and in vivo. It is thus reasonable that substantial effort has been allocated towards the development of the improved and optimized LV systems for effective and accurate gene-to-cell transfer of CRISPR/Cas tools. The main effort on that end has been put towards the improvement and optimization of the vector’s expression, development of integrase-deficient lentiviral vector (IDLV), aiming to minimize the risk of oncogenicity, toxicity, and pathogenicity, and enhancing manufacturing protocols for clinical applications required large-scale production. In this review, we will devote attention to (i) the basic biology of lentiviruses, and (ii) recent advances in the development of safer and more efficient CRISPR/Cas vector systems towards their use in preclinical and clinical applications. In addition, we will discuss in detail the recent progress in the repurposing of CRISPR/Cas systems related to base-editing and prime-editing applications.


Soft Matter ◽  
2020 ◽  
Vol 16 (26) ◽  
pp. 6191-6205 ◽  
Author(s):  
Fabio Guglietta ◽  
Marek Behr ◽  
Luca Biferale ◽  
Giacomo Falcucci ◽  
Mauro Sbragaglia

Computational Fluid Dynamics is currently used to design and improve the hydraulic properties of biomedical devices, wherein the large scale blood circulation needs to be simulated by accounting for the mechanical response of RBCs at the mesoscale.


2019 ◽  
Vol 21 (1) ◽  
pp. 113-127 ◽  
Author(s):  
Juliana Romo-Buchelly ◽  
María Rodríguez-Torres ◽  
Fernando Orozco-Sánchez

Lactic acid (LA) is an organic compound used in several industries, such as food, textile, chemical, and pharmaceutical. The global interest  in  this  product  is  due  to  its  use  for  the  synthesis  of  numerous  chemical  compounds,  including  polylactic  acid,  a  biode-gradable thermoplastic and substitute for petroleum-derived plastics. An in-depth overview of the use of industrial and household wastes as inexpensive substrates in order to reduce the cost of LA production is presented. A review is carried out of the biotech-nological aspects that must be taken into account when using some wastes with high transformation potential to produce LA in a submerged  culture,  as  well  recommendations  for  their  use.  The  advantages  and  disadvantages  of  different  types  of  treatments used for the transformation of waste into suitable substrates are considered. Several methods of fermentation, as well as genetic strategies for increasing the production, are summarized and compared. It is expected that in a few years there will be many ad-vances in these areas that will allow greater large-scale production of LA using agroindustrial or household wastes, with potential positive economic and environmental impact in some regions of the planet.


Sign in / Sign up

Export Citation Format

Share Document