scholarly journals ICESag37, a Novel Integrative and Conjugative Element Carrying Antimicrobial Resistance Genes and Potential Virulence Factors in Streptococcus agalactiae

2017 ◽  
Vol 8 ◽  
Author(s):  
Kaixin Zhou ◽  
Lianyan Xie ◽  
Lizhong Han ◽  
Xiaokui Guo ◽  
Yong Wang ◽  
...  
2020 ◽  
Vol 8 (7) ◽  
pp. 1055
Author(s):  
Carmen Li ◽  
Dulmini Nanayakkara Sapugahawatte ◽  
Ying Yang ◽  
Kam Tak Wong ◽  
Norman Wai Sing Lo ◽  
...  

Penicillin non-susceptible Streptococcus agalactiae (PEN-NS GBS) has been increasingly reported, with multidrug-resistant (MDR) GBS documented in Japan. Here we identified two PEN-NS GBS strains during our surveillance studies: one from a patient’s wound and the other from a tilapia. The patient’s GBS (H21) and fish GBS (F49) were serotyped and tested for antibiotic susceptibility. Whole-genome sequencing was performed to find the sequence type, antimicrobial resistance genes, and mutations in penicillin-binding proteins (PBPs) and fluoroquinolone (FQ) resistance genes. H21 and F49 belonged to ST651, serotype Ib, and ST7, serotype Ia, respectively. H21 showed PEN and cefotaxime minimum inhibitory concentrations (MICs) of 2.0 mg/L. F49 showed PEN MIC 0.5 mg/L. H21 was MDR with ermB, lnuB, tetS, ant6-Ia, sat4a, and aph3-III antimicrobial resistance genes observed. Alignment of PBPs showed the combination of PBP1B (A95D) and 2B mutations (V80A, S147A, S160A) in H21 and a novel mutation in F49 at N192S in PBP2B. Alignment of FQ-resistant determinants revealed mutation sites on gyrA, gyrB, and parC and E in H21. To our knowledge, this is the first report of GBS isolates with such high penicillin and cefotaxime MICs. This raises the concern of emergence of MDR and PEN-NS GBS in and beyond healthcare facilities.


2020 ◽  
Author(s):  
Laura de Nies ◽  
Sara Lopes ◽  
Anna Heintz-Buschart ◽  
Cedric Christian Laczny ◽  
Patrick May ◽  
...  

AbstractBackgroundPathogenic microorganisms cause disease by invading, colonizing and damaging their host. Virulence factors including bacterial toxins contribute to their pathogenicity. Additionally, antimicrobial resistance genes allow pathogens to evade otherwise curative treatments. To understand causal relationships between microbiome compositions, functioning, and disease, it is therefore essential to identify virulence factors and antimicrobial resistance genes in metagenomic datasets. At present, there is a clear lack of computational approaches to simultaneously identifying these factors. Here we present PathoFact, a tool for the contextualized prediction of virulence factors and antimicrobial resistance genes in metagenomic data.ResultsPathoFact predicts virulence factors, bacterial toxins and antimicrobial resistance genes with high accuracy (0.92, 0.83 and 0.99) and specificity (0.96, 0.99 and 0.98), respectively. The performance of PathoFact was furthermore demonstrated on three publicly available case-control metagenomic datasets representing an actual infection as well as chronic diseases in which either pathogenic potential or bacterial toxins were predicted to play a role. With PathoFact, we identified virulence factors (including toxins) and antimicrobial resistance genes, and identified signature genes which differentiated between the disease and control groups.ConclusionPathoFact is an easy-to-use, modular, and reproducible pipeline for the identification of virulence factors, toxins and antimicrobial resistance genes in metagenomic data. Additionally, PathoFact combines the prediction of these pathogenicity factors with the identification of mobile genetic elements. This provides further depth to the analysis by considering the genomic context of the pertinent genes. Furthermore, each module (virulence factors, toxin and antimicrobial resistance genes) of PathoFact is also a standalone component, making it a flexible and versatile tool. PathoFact is freely available online at https://git-r3lab.uni.lu/laura.denies/PathoFact.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mohammed Elbediwi ◽  
Yanting Tang ◽  
Dawei Shi ◽  
Hazem Ramadan ◽  
Yaohui Xu ◽  
...  

Salmonella spp. is recognized as an important zoonotic pathogen. The emergence of antimicrobial resistance in Salmonella enterica poses a great public health concern worldwide. While the knowledge on the incidence and the characterization of different S. enterica serovars causing chick embryo death remains obscure in China. In this study, we obtained 45 S. enterica isolates from 2,139 dead chick embryo samples collected from 28 breeding chicken hatcheries in Henan province. The antimicrobial susceptibility assay was performed by the broth microdilution method and the results showed that 31/45 (68.8%) isolates were multidrug-resistant (≥3 antimicrobial classes). Besides the highest resistance rate was observed in the aminoglycoside class, all the isolates were susceptible to chloramphenicol, azithromycin, and imipenem. Furthermore, genomic characterization revealed that S. Enteritidis (33.33%; 15/45) was a frequent serovar that harbored a higher number of virulence factors compared to other serovars. Importantly, genes encoding β-lactamases were identified in three serovars (Thompson, Enteritidis, and Kottbus), whereas plasmid-mediated quinolone resistance genes (qnrB4) were detected in certain isolates of S. Thompson and the two S. Kottbus isolates. All the examined isolates harbored the typical virulence factors from Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2). Additionally, a correlation analysis between the antimicrobial resistance genes, phenotype, and plasmids was conducted among Salmonella isolates. It showed strong positive correlations (r < 0.6) between the different antimicrobial-resistant genes belonging to certain antimicrobial classes. Besides, IncF plasmid showed a strong negative correlation (r > −0.6) with IncHI2 and IncHI2A plasmids. Together, our study demonstrated antimicrobial-resistant S. enterica circulating in breeding chicken hatcheries in Henan province, highlighting the advanced approach, by using genomic characterization and statistical analysis, in conducting the routine monitoring of the emerging antimicrobial-resistant pathogens. Our findings also proposed that the day-old breeder chicks trading could be one of the potential pathways for the dissemination of multidrug-resistant S. enterica serovars.


Gut ◽  
2011 ◽  
Vol 60 (Suppl 1) ◽  
pp. A202-A203
Author(s):  
T. Elliott ◽  
B. Hudspith ◽  
N. Rayment ◽  
L. Randall ◽  
G. Wu ◽  
...  

2011 ◽  
Vol 77 (8) ◽  
pp. 2785-2787 ◽  
Author(s):  
Mads Bennedsen ◽  
Birgitte Stuer-Lauridsen ◽  
Morten Danielsen ◽  
Eric Johansen

ABSTRACTSecond-generation genome sequencing and alignment of the resulting reads toin silicogenomes containing antimicrobial resistance and virulence factor genes were used to screen for undesirable genes in 28 strains which could be used in human nutrition. No virulence factor genes were detected, while several isolates contained antimicrobial resistance genes.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Laura de Nies ◽  
Sara Lopes ◽  
Susheel Bhanu Busi ◽  
Valentina Galata ◽  
Anna Heintz-Buschart ◽  
...  

Abstract Background Pathogenic microorganisms cause disease by invading, colonizing, and damaging their host. Virulence factors including bacterial toxins contribute to pathogenicity. Additionally, antimicrobial resistance genes allow pathogens to evade otherwise curative treatments. To understand causal relationships between microbiome compositions, functioning, and disease, it is essential to identify virulence factors and antimicrobial resistance genes in situ. At present, there is a clear lack of computational approaches to simultaneously identify these factors in metagenomic datasets. Results Here, we present PathoFact, a tool for the contextualized prediction of virulence factors, bacterial toxins, and antimicrobial resistance genes with high accuracy (0.921, 0.832 and 0.979, respectively) and specificity (0.957, 0.989 and 0.994). We evaluate the performance of PathoFact on simulated metagenomic datasets and perform a comparison to two other general workflows for the analysis of metagenomic data. PathoFact outperforms all existing workflows in predicting virulence factors and toxin genes. It performs comparably to one pipeline regarding the prediction of antimicrobial resistance while outperforming the others. We further demonstrate the performance of PathoFact on three publicly available case-control metagenomic datasets representing an actual infection as well as chronic diseases in which either pathogenic potential or bacterial toxins are hypothesized to play a role. In each case, we identify virulence factors and AMR genes which differentiated between the case and control groups, thereby revealing novel gene associations with the studied diseases. Conclusion PathoFact is an easy-to-use, modular, and reproducible pipeline for the identification of virulence factors, bacterial toxins, and antimicrobial resistance genes in metagenomic data. Additionally, our tool combines the prediction of these pathogenicity factors with the identification of mobile genetic elements. This provides further depth to the analysis by considering the genomic context of the pertinent genes. Furthermore, PathoFact’s modules for virulence factors, toxins, and antimicrobial resistance genes can be applied independently, thereby making it a flexible and versatile tool. PathoFact, its models, and databases are freely available at https://pathofact.lcsb.uni.lu.


Sign in / Sign up

Export Citation Format

Share Document