scholarly journals Screening for Antimicrobial Resistance Genes and Virulence Factors via Genome Sequencing

2011 ◽  
Vol 77 (8) ◽  
pp. 2785-2787 ◽  
Author(s):  
Mads Bennedsen ◽  
Birgitte Stuer-Lauridsen ◽  
Morten Danielsen ◽  
Eric Johansen

ABSTRACTSecond-generation genome sequencing and alignment of the resulting reads toin silicogenomes containing antimicrobial resistance and virulence factor genes were used to screen for undesirable genes in 28 strains which could be used in human nutrition. No virulence factor genes were detected, while several isolates contained antimicrobial resistance genes.

2020 ◽  
Vol 11 ◽  
Author(s):  
Grazielle Lima Rodrigues ◽  
Pedro Panzenhagen ◽  
Rafaela Gomes Ferrari ◽  
Anamaria dos Santos ◽  
Vania Margaret Flosi Paschoalin ◽  
...  

2019 ◽  
Vol 63 (4) ◽  
Author(s):  
Wenming Zhu ◽  
Adrian Lawsin ◽  
Rebecca L. Lindsey ◽  
Dhwani Batra ◽  
Kristen Knipe ◽  
...  

ABSTRACT Four Enterobacteriaceae clinical isolates bearing mcr-1 gene-harboring plasmids were characterized. All isolates demonstrated the ability to transfer colistin resistance to Escherichia coli; plasmids were stable in conjugants after multiple passages on nonselective media. mcr-1 was located on an IncX4 (n = 3) or IncN (n = 1) plasmid. The IncN plasmid harbored 13 additional antimicrobial resistance genes. Results indicate that the mcr-1-bearing plasmids in this study were highly transferable in vitro and stable in the recipients.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Gamal Wareth ◽  
Christian Brandt ◽  
Lisa D. Sprague ◽  
Heinrich Neubauer ◽  
Mathias W. Pletz

Abstract Background Acinetobacter baumannii ability to develop and acquire resistance makes it one of the most critical nosocomial pathogens globally. Whole-genome sequencing (WGS) was applied to identify the acquired or mutational variants of antimicrobial resistance (AMR) genes in 85 German A. baumannii strains utilizing Illumina technology. Additionally, the whole genome of 104 German isolates deposited in the NCBI database was investigated. Results In-silico analysis of WGS data revealed wide varieties of acquired AMR genes mediating resistance mostly to aminoglycosides, cephalosporins, carbapenems, sulfonamides, tetracyclines and macrolides. In the 189 analyzed genomes, the ant (3″)-IIa conferring resistance to aminoglycosides was the most frequent (55%), followed by blaADC.25 (38.6%) conferring resistance to cephalosporin, blaOXA-23 (29%) and the blaOXA-66 variant of the intrinsic blaOXA-51-likes (26.5%) conferring resistance to carbapenems, the sul2 (26%) conferring resistance to sulfonamides, the tet. B (19.5%) conferring resistance to tetracycline, and mph. E and msr. E (19%) conferring resistance to macrolides. blaTEM variants conferring resistance to cephalosporins were found in 12% of genomes. Thirteen variants of the intrinsic blaOXA-51 carbapenemase gene, blaOXA-510 and blaADC-25 genes were found in isolates obtained from dried milk samples. Conclusion The presence of strains harboring acquired AMR genes in dried milk raises safety concerns and highlights the need for changes in producing dried milk. Acquired resistance genes and chromosomal gene mutation are successful routes for disseminating AMR determinants among A. baumannii. Identification of chromosomal and plasmid-encoded AMR in the genome of A. baumannii may help understand the mechanism behind the genetic mobilization and spread of AMR genes.


2019 ◽  
Vol 24 (16) ◽  
Author(s):  
Antonio Lozano-Leon ◽  
Carlos Garcia-Omil ◽  
Jacobo Dalama ◽  
Rafael Rodriguez-Souto ◽  
Jaime Martinez-Urtaza ◽  
...  

Nineteen Salmonella strains were isolated from 5,907 randomly selected mussel samples during a monitoring programme for the presence of Salmonella in shellfish in Galicia, north-west Spain (2012–16). Serovars, sequence type and antimicrobial resistance genes were determined through genome sequencing. Presence of the mcr-1 gene in one strain belonging to serovar Rissen and ST-469 was identified. The mcr-1 gene had not been isolated previously in environmental Salmonella isolated from mussels in Spain.


2014 ◽  
Vol 80 (12) ◽  
pp. 3656-3666 ◽  
Author(s):  
Basanta Kumar Biswal ◽  
Ramzi Khairallah ◽  
Kareem Bibi ◽  
Alberto Mazza ◽  
Ronald Gehr ◽  
...  

ABSTRACTWastewater discharges may increase the populations of pathogens, includingEscherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenicEscherichia coli(UPEC), the most abundantE. colipathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766E. coliisolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm2and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters.


2018 ◽  
Vol 84 (19) ◽  
Author(s):  
Yvonne Agersø ◽  
Birgitte Stuer-Lauridsen ◽  
Karin Bjerre ◽  
Michelle Geervliet Jensen ◽  
Eric Johansen ◽  
...  

ABSTRACTBacillus megaterium(n= 29),Bacillus velezensis(n= 26),Bacillus amyloliquefaciens(n= 6),Bacillus paralicheniformis(n= 28), andBacillus licheniformis(n= 35) strains from different sources, origins, and time periods were tested for the MICs for nine antimicrobial agents by the CLSI-recommended method (Mueller-Hinton broth, 35°C, for 18 to 20 h), as well as with a modified CLSI method (Iso-Sensitest [IST] broth, 37°C [35°C forB. megaterium], 24 h). This allows a proposal of species-specific epidemiological cutoff values (ECOFFs) for the interpretation of antimicrobial resistance in these species. MICs determined by the modified CLSI method were 2- to 16-fold higher than with the CLSI-recommended method for several antimicrobials. The MIC distributions differed between species for five of the nine antimicrobials. Consequently, use of the modified CLSI method and interpretation of resistance by use of species-specific ECOFFs is recommended. The genome sequences of all strains were determined and used for screening for resistance genes against the ResFinder database and for multilocus sequence typing. A putative chloramphenicol acetyltransferase (cat) gene was found in oneB. megateriumstrain with an elevated chloramphenicol MIC compared to the otherB. megateriumstrains. InB. velezensisandB. amyloliquefaciens, a putative tetracycline efflux gene,tet(L), was found in all strains (n= 27) with reduced tetracycline susceptibility but was absent in susceptible strains. AllB. paralicheniformisand 23% ofB. licheniformisstrains had elevated MICs for erythromycin and harboredermD. The presence of these resistance genes follows taxonomy suggesting they may be intrinsic rather than horizontally acquired. Reduced susceptibility to chloramphenicol, streptomycin, and clindamycin could not be explained in all species.IMPORTANCEWhen commercializing bacterial strains, likeBacillusspp., for feed applications or plant bioprotection, it is required that the strains are free of acquired antimicrobial resistance genes that could potentially spread to pathogenic bacteria, thereby adding to the pool of resistance genes that may cause treatment failures in humans or animals. Conversely, if antimicrobial resistance is intrinsic to a bacterial species, the risk of spreading horizontally to other bacteria is considered very low. Reliable susceptibility test methods and interpretation criteria at the species level are needed to accurately assess antimicrobial resistance levels. In the present study, tentative ECOFFs for fiveBacillusspecies were determined, and the results showed that the variation in MICs followed the respective species. Moreover, putative resistance genes, which were detected by whole-genome sequencing and suggested to be intrinsic rather that acquired, could explain the resistance phenotypes in most cases.


2020 ◽  
Vol 86 (20) ◽  
Author(s):  
Elizabeth A. Miller ◽  
Julia B. Ponder ◽  
Michelle Willette ◽  
Timothy J. Johnson ◽  
Kimberly L. VanderWaal

ABSTRACT Antimicrobial resistance (AMR) is a well-documented phenomenon in bacteria from many natural ecosystems, including wild animals. However, the specific determinants and spatial distribution of resistant bacteria and antimicrobial resistance genes (ARGs) in the environment remain incompletely understood. In particular, information regarding the importance of anthropogenic sources of AMR relative to that of other biological and ecological influences is lacking. We conducted a cross-sectional study of AMR in great horned owls (Bubo virginianus) and barred owls (Strix varia) admitted to a rehabilitation center in the midwestern United States. A combination of selective culture enrichment and shotgun metagenomic sequencing was used to identify ARGs from Enterobacteriaceae. Overall, the prevalence of AMR was comparable to that in past studies of resistant Enterobacteriaceae in raptors, with acquired ARGs being identified in 23% of samples. Multimodel regression analyses identified seasonality and owl age to be important predictors of the likelihood of the presence of ARGs, with birds sampled during warmer months being more likely to harbor ARGs than those sampled during cooler months and with birds in their hatch year being more likely to harbor β-lactam ARGs than adults. Beyond host-specific determinants, ARG-positive owls were also more likely to be recovered from areas of high agricultural land cover. Spatial clustering analyses identified a significant high-risk cluster of tetracycline resistance gene-positive owls in the southern sampling range, but this could not be explained by any predictor variables. Taken together, these results highlight the complex distribution of AMR in natural environments and suggest that both biological and anthropogenic factors play important roles in determining the emergence and persistence of AMR in wildlife. IMPORTANCE Antimicrobial resistance (AMR) is a multifaceted problem that poses a worldwide threat to human and animal health. Recent reports suggest that wildlife may play an important role in the emergence, dissemination, and persistence of AMR. As such, there have been calls for better integration of wildlife into current research on AMR, including the use of wild animals as biosentinels of AMR contamination in the environment. A One Health approach can be used to gain a better understanding of all AMR sources and pathways, particularly those at the human-animal-environment interface. Our study focuses on this interface in order to assess the effect of human-impacted landscapes on AMR in a wild animal. This work highlights the value of wildlife rehabilitation centers for environmental AMR surveillance and demonstrates how metagenomic sequencing within a spatial epidemiology framework can be used to address questions surrounding AMR complexity in natural ecosystems.


Sign in / Sign up

Export Citation Format

Share Document