scholarly journals Do Organic Substrates Drive Microbial Community Interactions in Arctic Snow?

2019 ◽  
Vol 10 ◽  
Author(s):  
Benoît Bergk Pinto ◽  
Lorrie Maccario ◽  
Aurélien Dommergue ◽  
Timothy M. Vogel ◽  
Catherine Larose
Microbiome ◽  
2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Kaela K. Amundson ◽  
Mikayla A. Borton ◽  
Rebecca A. Daly ◽  
David W. Hoyt ◽  
Allison Wong ◽  
...  

Abstract Background Microbial colonization of subsurface shales following hydraulic fracturing offers the opportunity to study coupled biotic and abiotic factors that impact microbial persistence in engineered deep subsurface ecosystems. Shale formations underly much of the continental USA and display geographically distinct gradients in temperature and salinity. Complementing studies performed in eastern USA shales that contain brine-like fluids, here we coupled metagenomic and metabolomic approaches to develop the first genome-level insights into ecosystem colonization and microbial community interactions in a lower-salinity, but high-temperature western USA shale formation. Results We collected materials used during the hydraulic fracturing process (i.e., chemicals, drill muds) paired with temporal sampling of water produced from three different hydraulically fractured wells in the STACK (Sooner Trend Anadarko Basin, Canadian and Kingfisher) shale play in OK, USA. Relative to other shale formations, our metagenomic and metabolomic analyses revealed an expanded taxonomic and metabolic diversity of microorganisms that colonize and persist in fractured shales. Importantly, temporal sampling across all three hydraulic fracturing wells traced the degradation of complex polymers from the hydraulic fracturing process to the production and consumption of organic acids that support sulfate- and thiosulfate-reducing bacteria. Furthermore, we identified 5587 viral genomes and linked many of these to the dominant, colonizing microorganisms, demonstrating the key role that viral predation plays in community dynamics within this closed, engineered system. Lastly, top-side audit sampling of different source materials enabled genome-resolved source tracking, revealing the likely sources of many key colonizing and persisting taxa in these ecosystems. Conclusions These findings highlight the importance of resource utilization and resistance to viral predation as key traits that enable specific microbial taxa to persist across fractured shale ecosystems. We also demonstrate the importance of materials used in the hydraulic fracturing process as both a source of persisting shale microorganisms and organic substrates that likely aid in sustaining the microbial community. Moreover, we showed that different physicochemical conditions (i.e., salinity, temperature) can influence the composition and functional potential of persisting microbial communities in shale ecosystems. Together, these results expand our knowledge of microbial life in deep subsurface shales and have important ramifications for management and treatment of microbial biomass in hydraulically fractured wells.


mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Rhea G. Abisado ◽  
Saida Benomar ◽  
Jennifer R. Klaus ◽  
Ajai A. Dandekar ◽  
Josephine R. Chandler

2020 ◽  
Vol 8 (2) ◽  
pp. 286
Author(s):  
Nina Lackner ◽  
Andreas O. Wagner ◽  
Rudolf Markt ◽  
Paul Illmer

pH is a central environmental factor influencing CH4 production from organic substrates, as every member of the complex microbial community has specific pH requirements. Here, we show how varying pH conditions (5.0–8.5, phosphate buffered) and the application of a phosphate buffer per se induce shifts in the microbial community composition and the carbon flow during nine weeks of thermophilic batch digestion. Beside monitoring the methane production as well as volatile fatty acid concentrations, amplicon sequencing of the 16S rRNA gene was conducted. The presence of 100 mM phosphate resulted in reduced CH4 production during the initial phase of the incubation, which was characterized by a shift in the dominant methanogenic genera from a mixed Methanosarcina and Methanoculleus to a pure Methanoculleus system. In buffered samples, acetate strongly accumulated in the beginning of the batch digestion and subsequently served as a substrate for methanogens. Methanogenesis was permanently inhibited at pH values ≤5.5, with the maximum CH4 production occurring at pH 7.5. Adaptations of the microbial community to the pH variations included shifts in the archaeal and bacterial composition, as less competitive organisms with a broad pH range were able to occupy metabolic niches at unfavorable pH conditions.


2016 ◽  
pp. 93-102
Author(s):  
Vivian A. Rincon-Florez ◽  
Lilia C. Carvalhais ◽  
Yash P. Dang ◽  
Peer M. Schenk

2020 ◽  
Vol 74 (1) ◽  
pp. 247-266 ◽  
Author(s):  
Caroline S. Harwood

The enzyme molybdenum nitrogenase converts atmospheric nitrogen gas to ammonia and is of critical importance for the cycling of nitrogen in the biosphere and for the sustainability of life. Alternative vanadium and iron-only nitrogenases that are homologous to molybdenum nitrogenases are also found in archaea and bacteria, but they have a different transition metal, either vanadium or iron, at their active sites. So far alternative nitrogenases have only been found in microbes that also have molybdenum nitrogenase. They are less widespread than molybdenum nitrogenase in bacteria and archaea, and they are less efficient. The presumption has been that alternative nitrogenases are fail-safe enzymes that are used in situations where molybdenum is limiting. Recent work indicates that vanadium nitrogenase may play a role in the global biological nitrogen cycle and iron-only nitrogenase may contribute products that shape microbial community interactions in nature.


2021 ◽  
Vol 13 (23) ◽  
pp. 13035
Author(s):  
Haiyan Duan ◽  
Minghua Ji ◽  
Yukang Xie ◽  
Jiping Shi ◽  
Li Liu ◽  
...  

The present study investigated the effects of bedding material (BM) waste on physicochemical properties, organic matter (OM) degradation, microbial community structure and metabolic function during composting. The results showed that bedding material (CK-0, S1-40%, S2-25%) optimized the composting conditions for lignocellulose and OM biodegradation. The highest OM degradation and humic substance (HS) synthesis rates were observed in the 40% BM addition group. Firmicutes was more abundant in the bedding material addition groups, whereas Proteobacteria was more abundant in the group without bedding material. Functional prediction showed higher carbohydrate and amino acid metabolism in the BM groups than that in control group. Animal and plant pathogens were almost eliminated, and saprotrophs were the dominant fungal trophic modes after 40% BM addition composting. Cellulose, hemicellulose, and organic matter had strong associations with microbial communities, such as Lysinibacillus and Corynebacterium (bacteria), compared to the associations of Aspergillus, Candida, and Sordariomycetes (fungi) (p value < 0.05). Network analysis revealed closer microbial community interactions in 40% BM addition group than in other groups. These findings provide detailed information about the coupling of material conversion, of bacterial and fungal succession during composting, and that bedding materials waste can also be used as an effective compost amendment.


Sign in / Sign up

Export Citation Format

Share Document