scholarly journals Corrigendum: Diverse Mobile Genetic Elements and Conjugal Transferability of Sulfonamide Resistance Genes (sul1, sul2, and sul3) in Escherichia coli Isolates From Penaeus vannamei and Pork From Large Markets in Zhejiang, China

2020 ◽  
Vol 11 ◽  
Author(s):  
Han Jiang ◽  
Hui Cheng ◽  
Yi Liang ◽  
Shengtao Yu ◽  
Ting Yu ◽  
...  
2009 ◽  
Vol 75 (18) ◽  
pp. 5999-6001 ◽  
Author(s):  
Gosia K. Kozak ◽  
David L. Pearl ◽  
Julia Parkman ◽  
Richard J. Reid-Smith ◽  
Anne Deckert ◽  
...  

ABSTRACT Sulfonamide-resistant Escherichia coli and Salmonella isolates from pigs and chickens in Ontario and Québec were screened for sul1, sul2, and sul3 by PCR. Each sul gene was distributed differently across populations, with a significant difference between distribution in commensal E. coli and Salmonella isolates and sul3 restricted mainly to porcine E. coli isolates.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Kenia Barrantes ◽  
Luz María Chacón ◽  
Eric Morales ◽  
Lisbeth Ramírez-Carvajal

We report the draft genome sequence of the multidrug-resistant Escherichia coli strain PTA A1517-5, isolated from a wastewater treatment plant in Costa Rica. The genome consists of 4,927,375 bp with a GC content of 50.57% and a total of 4,853 genes. This strain harbors bla CTX-M-115, bla CMY-2, aminoglycoside, tetracycline, and sulfonamide resistance genes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pimlapas Leekitcharoenphon ◽  
Markus Hans Kristofer Johansson ◽  
Patrick Munk ◽  
Burkhard Malorny ◽  
Magdalena Skarżyńska ◽  
...  

AbstractThe emergence of antimicrobial resistance (AMR) is one of the biggest health threats globally. In addition, the use of antimicrobial drugs in humans and livestock is considered an important driver of antimicrobial resistance. The commensal microbiota, and especially the intestinal microbiota, has been shown to have an important role in the emergence of AMR. Mobile genetic elements (MGEs) also play a central role in facilitating the acquisition and spread of AMR genes. We isolated Escherichia coli (n = 627) from fecal samples in respectively 25 poultry, 28 swine, and 15 veal calf herds from 6 European countries to investigate the phylogeny of E. coli at country, animal host and farm levels. Furthermore, we examine the evolution of AMR in E. coli genomes including an association with virulence genes, plasmids and MGEs. We compared the abundance metrics retrieved from metagenomic sequencing and whole genome sequenced of E. coli isolates from the same fecal samples and farms. The E. coli isolates in this study indicated no clonality or clustering based on country of origin and genetic markers; AMR, and MGEs. Nonetheless, mobile genetic elements play a role in the acquisition of AMR and virulence genes. Additionally, an abundance of AMR was agreeable between metagenomic and whole genome sequencing analysis for several AMR classes in poultry fecal samples suggesting that metagenomics could be used as an indicator for surveillance of AMR in E. coli isolates and vice versa.


Sign in / Sign up

Export Citation Format

Share Document