scholarly journals Traditional Chinese Medicine Tanreqing Inhibits Quorum Sensing Systems in Pseudomonas aeruginosa

2020 ◽  
Vol 11 ◽  
Author(s):  
Weifeng Yang ◽  
Qing Wei ◽  
Qian Tong ◽  
Kaiyu Cui ◽  
Gaiying He ◽  
...  

Pseudomonas aeruginosa is an opportunistic pathogen that can infect a wide variety of hosts including humans, plants, and animals. The production of virulence factors is the determinant of the infection paradigm and is under orchestrated regulation via cell-to-cell communication process called quorum sensing (QS). To disable QS circuits and prevent bacterial infections, a large battery of anti-QS agents, particularly from traditional Chinese medicine have been developed. Here, we used P. aeruginosa as a model microorganism to investigate the effect of traditional Chinese medicine Tanreqing (TRQ) formula on bacterial pathogenicity. Phenotypic analysis showed that TRQ treatment could completely inhibit the production of phenazine pyocyanin and moderately inhibit the production of virulence factors such as rhamnolipids, elastase, and alkaline protease. Further transcriptomic analyses revealed that TRQ treatment could significantly attenuate the expression of QS-regulated genes in P. aeruginosa and TRQ-treated P. aeruginosa regulon shared a large overlap with QS regulon. Component contribution to QS inhibition shed light on the indispensable role of all five components in TRQ formula. Further genetic analysis indicated that upstream regulators of QS systems, including two-component systems GacS/GacA and PprA/PprB, were both inhibited by TRQ treatment. Finally, our TRQ formula could efficiently protect Caenorhabditis elegans from killing by P. aeruginosa. Altogether, we have proved TRQ formula as an effective and specific agent to attenuate bacterial virulence and combat bacterial infections.

2019 ◽  
Vol 78 ◽  
pp. 01004
Author(s):  
Shan Li ◽  
Jiangning Yao ◽  
Haoming Li

Pseudomonas aeruginosa is a Gram-negative organism that can survive under harsh conditions, and it is also an opportunistic pathogen that can produce cell-associated extracellular virulence factors. Several of these virulence factors have been demonstrated to be regulated by quorum sensing (QS). Plantain Herb has been used as antibacterial agents for many centuries in China. In this study, we analyzed Plantain Herb Extracts (PHE) at the concentration of 16 μg/mL (Group A, MIC), 8 μg/mL (Group B, 1/2 MIC) and 4 μg/mL (Group C, 1/4 MIC) for inhibition of the virulence factors production and biofilm formation in P. aeruginosa PAO1. The virulence factors included pyocyanin, rhamnolipids, protease and alginate. PHE showed significant inhibition of virulence factors as compared to the control group without interfering its growth. Thus, PHE might be a potent QS inhibitor and anti-biofilm agent in the treatment of Pseudomonas aeruginosa infections.


Author(s):  
Kayla A. Simanek ◽  
Isabelle R. Taylor ◽  
Erica K. Richael ◽  
Erica Lasek-Nesselquist ◽  
Bonnie L. Bassler ◽  
...  

Bacteria use a cell-cell communication process called quorum sensing (QS) to orchestrate collective behaviors. QS relies on the group-wide detection of molecules called autoinducers (AI).


Author(s):  
Zulkar Nain ◽  
Sifat Bin Sayed ◽  
Mohammad Minnatul Karim ◽  
Md. Ariful Islam ◽  
Utpal Kumar Adhikari

Pseudomonas aeruginosa is an emerging opportunistic pathogen responsible for cystic fibrosis and nosocomial infections. In addition, empirical treatments are become inefficient due to their multiple-antibiotic resistance and extensive colonizing ability. Quorum sensing (QS) plays a vital role in the regulation of virulence factors in P. aeruginosa. Attenuation of virulence by QS inhibition could be an alternative and effective approach to control infections. Therefore, we sought to discover new QS inhibitors (QSIs) against LasR receptor in P. aeruginosa using chemoinformatics. Initially, a structure-based high-throughput virtual screening was performed using the LasR active site that identified 61404 relevant molecules. E-pharmacophore (ADAHH) screening of these molecules rendered 72 QSI candidates. In standard-precision docking, only 7 compounds were found as potential QSIs due to their higher binding affinity to LasR receptor (-7.53 to -10.32 kcal/mol compared to -7.43 kcal/mol of native ligands). The ADMET properties of these compounds were suitable to be QSIs. Later, extra-precision docking and binding energy calculation suggested ZINC19765885 and ZINC72387263 as the most promising QSIs. The dynamic simulation of the docked complexes showed good binding stability and molecular interactions. The current study suggested that these two compounds could be used in P. aeruginosa QS inhibition to combat bacterial infections.


2021 ◽  
Author(s):  
Nicole E Smalley ◽  
Amy L Schaefer ◽  
Kyle L Asfahl ◽  
Crystal Perez ◽  
E Peter Greenberg ◽  
...  

The bacterium Pseudomonas aeruginosa is an opportunistic pathogen and it thrives in many different saprophytic habitats. In this bacterium acyl-homoserine lactone quorum sensing (QS) can activate expression of over 100 genes, many of which code for extracellular products. P. aeruginosa has become a model for studies of cell-cell communication and coordination of cooperative activities. We hypothesized that long-term growth of bacteria under conditions where only limited QS-controlled functions were required would result in a reduction in the size of the QS-controlled regulon. To test this hypothesis, we grew P. aeruginosa for about 1000 generations in a condition in which expression of QS-activated genes is required for growth. We compared the QS regulons of populations after about 35 generations to those after about 1000 generations in two independent lineages by using quorum quenching and RNA-seq technology. In one evolved lineage the number of QS-activated genes identified was reduced by about 70% and in the other by about 45%. Our results lend important insights about the variations in the number of QS-activated genes reported for different bacterial strains and, more broadly, about the environmental histories of P. aeruginosa.


Author(s):  
Amel Elsheredy ◽  
Ingy El-Soudany ◽  
Eglal Elsherbini ◽  
Dalia Metwally ◽  
Abeer Ghazal

Background and Objectives: Pseudomonas aeruginosa is a problematic opportunistic pathogen causing several types of nosocomial infections with a high resistance rate to antibiotics. Production of many virulence factors in P. aeruginosa is regulated by quorum sensing (QS), a cell-to-cell communication mechanism. In this study, we aimed to assess and compare the inhibitory effect of azithromycin (AZM) and EPI- PAβN (efflux pump inhibitor- Phenylalanine-Arginine Beta-Naphthylamide) on QS system and QS-dependent virulence factors in P. aeruginosa clinical isolates. Materials and Methods: A total of 50 P. aeruginosa isolates were obtained from different types of clinical specimens. Isolates were investigated for detection of QS system molecules by AHL cross-feeding bioassay and QS-dependent virulence factors; this was also confirmed by detection of QS genes (lasR, lasI, rhlR, and rhlI) using PCR assay. The inhibitory effect of sub-MIC AZM and EPI PAβN on these virulence factors was assessed. Results: All the P. aeruginosa, producing QS signals C4 HSL, failed to produce C4 HSL in the presence of sub-MIC AZM, In the presence of EPI PAβN (20 µg/ml) only 14 isolates were affected, there was a significant reduction in QS-dependent virulence factors production (protease, biofilm, rhamnolipid and pyocyanin) in the presence of either 20 µg/ml EPI or subMIC of AZM with the inhibitory effect of AZM was more observed than PAβN. Conclusion: Anti-QS agents like AZM and EPI (PAβN) are useful therapeutic options for P. aeruginosa due to its inhibitory effect on QS-dependent virulence factors production without selective pressure on bacteria growth, so resistance to these agents is less likely to develop.


Marine Drugs ◽  
2019 ◽  
Vol 17 (9) ◽  
pp. 494 ◽  
Author(s):  
José Carlos Reina ◽  
Ignacio Pérez-Victoria ◽  
Jesús Martín ◽  
Inmaculada Llamas

The cell density-dependent mechanism, quorum sensing (QS), regulates the expression of virulence factors. Its inhibition has been proposed as a promising new strategy to prevent bacterial pathogenicity. In this study, 827 strains from the microbiota of sea anemones and holothurians were screened for their ability to produce quorum-sensing inhibitor (QSI) compounds. The strain M3-10, identified as Vibrio alginolyticus by 16S rRNA gene sequencing, as well as ANIb and dDDH analyses, was selected for its high QSI activity. Bioassay-guided fractionation of the cell pellet extract from a fermentation broth of strain M3-10, followed by LC–MS and NMR analyses, revealed tyramine and N-acetyltyramine as the active compounds. The QS inhibitory activity of these molecules, which was confirmed using pure commercially available standards, was found to significantly inhibit Chromobacterium violaceum ATCC 12472 violacein production and virulence factors, such as pyoverdine production, as well as swarming and twitching motilities, produced by Pseudomonas aeruginosa PAO1. This constitutes the first study to screen QSI-producing strains in the microbiota of anemones and holothurians and provides an insight into the use of naturally produced QSI as a possible strategy to combat bacterial infections.


Marine Drugs ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 205 ◽  
Author(s):  
Mengjia Wang ◽  
Lu Zhao ◽  
Hao Wu ◽  
Chaoyue Zhao ◽  
Qianhong Gong ◽  
...  

Pseudomonas aeruginosa is an opportunistic pathogen using virulence factors and biofilm regulated by quorum sensing (QS) systems to infect patients and protect itself from environmental stress and antibiotics. Interfering with QS systems is a novel approach to combat P. aeruginosa infections without killing the bacteria, meaning that it is much harder for bacteria to develop drug resistance. A marine fungus Cladosporium sp. Z148 with anti-QS activity was obtained from Jiaozhou Bay, China. Cladodionen, a novel QS inhibitor, was isolated from the extracts of this fungus. Cladodionen had a better inhibitory effect than pyocyanin on the production of elastase and rhamnolipid. It also inhibited biofilm formation and motilities. The mRNA expressions of QS-related genes, including receptor proteins (lasR, rhlR and pqsR), autoinducer synthases (lasI, rhlI and pqsA) and virulence factors (lasB and rhlA) were down-regulated by cladodionen. Molecular docking analysis showed that cladodionen had better binding affinity to LasR and PqsR than natural ligands. Moreover, the binding affinity of cladodionen to LasR was higher than to PqsR. Cladodionen exhibits potential as a QS inhibitor against P. aeruginosa, and its structure–activity relationships should be further studied to illustrate the mode of action, optimize its structure and improve anti-QS activity.


Microbiology ◽  
2011 ◽  
Vol 157 (7) ◽  
pp. 2120-2132 ◽  
Author(s):  
Olivier M. Vandeputte ◽  
Martin Kiendrebeogo ◽  
Tsiry Rasamiravaka ◽  
Caroline Stévigny ◽  
Pierre Duez ◽  
...  

Preliminary screening of the Malagasy plant Combretum albiflorum for compounds attenuating the production of quorum sensing (QS)-controlled virulence factors in bacteria led to the identification of active fractions containing flavonoids. In the present study, several flavonoids belonging to the flavone, flavanone, flavonol and chalcone structural groups were screened for their capacity to reduce the production of QS-controlled factors in the opportunistic pathogen Pseudomonas aeruginosa (strain PAO1). Flavanones (i.e. naringenin, eriodictyol and taxifolin) significantly reduced the production of pyocyanin and elastase in P. aeruginosa without affecting bacterial growth. Consistently, naringenin and taxifolin reduced the expression of several QS-controlled genes (i.e. lasI, lasR, rhlI, rhlR, lasA, lasB, phzA1 and rhlA) in P. aeruginosa PAO1. Naringenin also dramatically reduced the production of the acylhomoserine lactones N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) and N-butanoyl-l-homoserine lactone (C4-HSL), which is driven by the lasI and rhlI gene products, respectively. In addition, using mutant strains deficient for autoinduction (ΔlasI and ΔrhlI) and LasR- and RhlR-based biosensors, it was shown that QS inhibition by naringenin not only is the consequence of a reduced production of autoinduction compounds but also results from a defect in the proper functioning of the RlhR–C4-HSL complex. Widely distributed in the plant kingdom, flavonoids are known for their numerous and determinant roles in plant physiology, plant development and in the success of plant–rhizobia interactions, but, as shown here, some of them also have a role as inhibitors of the virulence of pathogenic bacteria by interfering with QS mechanisms.


2021 ◽  
Vol 9 (9) ◽  
pp. 1807
Author(s):  
Léonie Pellissier ◽  
Sara Leoni ◽  
Laurence Marcourt ◽  
Emerson Ferreira Queiroz ◽  
Nicole Lecoultre ◽  
...  

The opportunistic pathogen Pseudomonas aeruginosa is one of the “critical priority pathogens” due to its multidrug resistance to a wide range of antibiotics. Its ability to invade and damage host tissues is due to the use of quorum sensing (QS) to collectively produce a plethora of virulence factors. Inhibition of QS is an attractive strategy for new antimicrobial agents because it disrupts the initial events of infection without killing the pathogen. Highly diverse microorganisms as endophytes represent an under-explored source of bioactive natural products, offering opportunities for the discovery of novel QS inhibitors (QSI). In the present work, the objective was to explore selective QSIs within a unique collection of fungal endophytes isolated from the tropical palm Astrocaryum sciophilum. The fungi were cultured, extracted, and screened for their antibacterial and specific anti-QS activities against P. aeruginosa. The endophytic strain Lasiodiplodia venezuelensis was prioritized for scaled-up fractionation for its selective activity, leading to the isolation of eight compounds in a single step. Among them, two pyran-derivatives were found to be responsible for the QSI activity, with an effect on some QS-regulated virulence factors. Additional non-targeted metabolomic studies on P. aeruginosa documented their effects on the production of various virulence-related metabolites.


Sign in / Sign up

Export Citation Format

Share Document