scholarly journals Patterns of Microbiome Variation Among Infrapopulations of Permanent Bloodsucking Parasites

2021 ◽  
Vol 12 ◽  
Author(s):  
Jorge Doña ◽  
Stephany Virrueta Herrera ◽  
Tommi Nyman ◽  
Mervi Kunnasranta ◽  
Kevin P. Johnson

While interspecific variation in microbiome composition can often be readily explained by factors such as host species identity, there is still limited knowledge of how microbiomes vary at scales lower than the species level (e.g., between individuals or populations). Here, we evaluated variation in microbiome composition of individual parasites among infrapopulations (i.e., populations of parasites of the same species living on a single host individual). To address this question, we used genome-resolved and shotgun metagenomic data of 17 infrapopulations (balanced design) of the permanent, bloodsucking seal louse Echinophthirius horridus sampled from individual Saimaa ringed seals Pusa hispida saimensis. Both genome-resolved and read-based metagenomic classification approaches consistently show that parasite infrapopulation identity is a significant factor that explains both qualitative and quantitative patterns of microbiome variation at the intraspecific level. This study contributes to the general understanding of the factors driving patterns of intraspecific variation in microbiome composition, especially of bloodsucking parasites, and has implications for understanding how well-known processes occurring at higher taxonomic levels, such as phylosymbiosis, might arise in these systems.

Author(s):  
Jorge Doña ◽  
Stephany Virrueta Herrera ◽  
Tommi Nyman ◽  
Mervi Kunnasranta ◽  
Kevin P. Johnson

AbstractWhile interspecific variation in microbiome composition can often be readily explained by factors such as host species identity, there is still limited knowledge of how microbiomes vary at scales lower than the species level (e.g., between individuals or populations). Here, we evaluated variation in microbiome composition of individual parasites among infrapopulations (i.e., populations of parasites of the same species living on a single host individual). To address this question, we used genome-resolved and shotgun metagenomic data of 17 infrapopulations (balanced design) of the permanent, bloodsucking seal louse Echinophthirius horridus sampled from individual Saimaa ringed seals Pusa hispida saimensis. Both genome-resolved and read-based metagenomic classification approaches consistently show that parasite infrapopulation identity is a significant factor that explains both qualitative and quantitative patterns of microbiome variation at the intraspecific level. This study contributes to the general understanding of the factors driving patterns of intraspecific variation in microbiome composition, especially of bloodsucking parasites, and has implications for understanding how well-known processes occurring at higher taxonomic levels, such as phylosymbiosis, might arise in these systems.


2019 ◽  
Author(s):  
Samantha K. Dawson ◽  
Mari Jönsson

AbstractAs the use of functional trait approaches is growing in fungal ecology, there is a corresponding need to understand trait variation. Much of trait theory and statistical techniques are built on the assumption that interspecific variation is larger than intraspecific variation. This allows the use of mean trait values for species, which the vast majority of trait studies adopt. We examined the size of intra- vs. inter-specific variation in two wood fungal fruit body traits: size and density. Both coefficients of variation (CV) and Trait Probability Density analyses were used to quantify trait variation. We found that intraspecific variation in fruit body density was more than twice as variable as interspecific variation, and fruit body size was hugely variable (CVs averaged 190%), although interspecific variation was larger. Further, there was a very high degree of overlap in the trait space of species, indicating that there may be little niche partitioning at the species level. These findings show that intraspecific variation is highly important and should be accounted for when using trait approaches to understand fungal ecology. More data on variation of other fungal traits is also desperately needed to ascertain whether the high level of variation found here is typical for fungi. While the need to measure individuals does reduce the ability to generalise at the species level, it does not negate the usefulness of fungal trait measurements. There are two reasons for this: first, the ecology of most fungal species remains poorly known and trait measurements address this gap; and secondly, if trait overlap between species more generally is as much as we found here, then individual measurements may be more helpful than species identity for untangling fungal community dynamics.


2021 ◽  
Author(s):  
Reilly O. Cooper ◽  
Sarah Tjards ◽  
Jessica Rischling ◽  
David T. Nguyen ◽  
Clayton E. Cressler

AbstractBackgroundChronic antibiotic exposure impacts host health through changes to the microbiome, increasing disease risk and reducing the functional repertoire of community members. The detrimental effects of antibiotic perturbation on microbiome structure and function after one host generation of exposure have been well-studied. However, much less is understood about the multigenerational effects of antibiotic exposure and how the microbiome may recover across host generations.ResultsIn this study, we examined microbiome composition and host fitness across five generations of exposure to a suite of three antibiotics in the model zooplankton host Daphnia magna. By utilizing a split-brood design where half of the offspring from antibiotic-exposed parents were allowed to recover and half were maintained in antibiotics, we aimed to examine recovery and resilience of the microbiome. Unexpectedly, we discovered that experimental isolation of single host individuals across generations also exerted a strong effect on microbiome composition, with composition becoming less diverse over generations regardless of treatment. Simultaneously, Daphnia magna body size and cumulative reproduction increased across generations while survival decreased. Though antibiotics did cause substantial changes to microbiome composition, the microbiome generally became similar to the no antibiotic control treatment within one generation of recovery no matter how many prior generations were spent in antibiotics.ConclusionsContrary to results found in vertebrate systems, Daphnia magna microbiome composition recovers quickly after antibiotic exposure. However, our results suggest that the isolation of individual hosts leads to the stochastic extinction of rare taxa in the microbiome, indicating that these taxa are likely maintained via transmission in host populations rather than intrinsic mechanisms. This may explain the intriguing result that microbiome diversity loss increased host fitness.


Author(s):  
J Vacquié-Garcia ◽  
C Lydersen ◽  
E Lydersen ◽  
GN Christensen ◽  
C Guinet ◽  
...  

ZooKeys ◽  
2018 ◽  
Vol 751 ◽  
pp. 1-40 ◽  
Author(s):  
Alice Laciny ◽  
Herbert Zettel ◽  
Alexey Kopchinskiy ◽  
Carina Pretzer ◽  
Anna Pal ◽  
...  

A taxonomic description of all castes of Colobopsisexplodens Laciny & Zettel, sp. n. from Borneo, Thailand, and Malaysia is provided, which serves as a model species for biological studies on “exploding ants” in Southeast Asia. The new species is a member of the Colobopsiscylindrica (COCY) group and falls into a species complex that has been repeatedly summarized under the name Colobopsissaundersi (Emery, 1889) (formerly Camponotussaundersi). The COCY species group is known under its vernacular name “exploding ants” for a unique behaviour: during territorial combat, workers of some species sacrifice themselves by rupturing their gaster and releasing sticky and irritant contents of their hypertrophied mandibular gland reservoirs to kill or repel rivals. This study includes first illustrations and morphometric characterizations of males of the COCY group: Colobopsisexplodens Laciny & Zettel, sp. n. and Colobopsisbadia (Smith, 1857). Characters of male genitalia and external morphology are compared with other selected taxa of Camponotini. Preliminary notes on the biology of C.explodens Laciny & Zettel, sp. n. are provided. To fix the species identity of the closely related C.badia, a lectotype from Singapore is designated. The following taxonomic changes within the C.saundersi complex are proposed: Colobopsissolenobia (Menozzi, 1926), syn. n. and Colobopsistrieterica (Menozzi, 1926), syn. n. are synonymized with Colobopsiscorallina Roger, 1863, a common endemic species of the Philippines. Colobopsissaginata Stitz, 1925, stat. n., hitherto a subspecies of C.badia, is raised to species level.


2020 ◽  
Vol 375 (1808) ◽  
pp. 20190604 ◽  
Author(s):  
Britt Koskella ◽  
Joy Bergelson

Microorganismal diversity can be explained in large part by selection imposed from both the abiotic and biotic environments, including—in the case of host-associated microbiomes—interactions with eukaryotes. As such, the diversity of host-associated microbiomes can be usefully studied across a variety of scales: within a single host over time, among host genotypes within a population, between populations and among host species. A plethora of recent studies across these scales and across diverse systems are: (i) exemplifying the importance of the host genetics in shaping microbiome composition; (ii) uncovering the role of the microbiome in shaping key host phenotypes; and (iii) highlighting the dynamic nature of the microbiome. They have also raised a critical question: do these complex associations fit within our existing understanding of evolution and coevolution, or do these often intimate and seemingly cross-generational interactions follow novel evolutionary rules from those previously identified? Herein, we describe the known importance of (co)evolution in host–microbiome systems, placing the existing data within extant frameworks that have been developed over decades of study, and ask whether there are unique properties of host–microbiome systems that require a paradigm shift. By examining when and how selection can act on the host and its microbiome as a unit (termed, the holobiont), we find that the existing conceptual framework, which focuses on individuals, as well as interactions among individuals and groups, is generally well suited for understanding (co)evolutionary change in these intimate assemblages. This article is part of the theme issue ‘The role of the microbiome in host evolution’.


1999 ◽  
Vol 15 (5) ◽  
pp. 603-617 ◽  
Author(s):  
Roger Guevara ◽  
Rodolfo Dirzo

The emphasis of antagonistic fungus–consumer interactions to date has been on temperate taxa and predominantly zoocentric, neglecting the effects on the fungal component. These interactions are expected to be especially complex and diverse in the tropics, where both components display their greatest diversity. Variability in fungivory (apparent biomass consumed) of understorey basidiomycetes in a tropical cloud forest was investigated to test whether this could be explained (at the proximate level) by apparency-related characteristics of the aboveground structures (colour of pileus, stipe and hymenium; size and aggregation), as has been suggested for plant–herbivore relationships. Considerable interspecific variation in fungivory was detected (range 0–50%). Cluster analysis showed that neighbouring clusters had dissimilar levels of fungivory. Such clusters were similar in colour attributes of aboveground structures, but differed in aggregation size and apparent biomass. A quantitative analysis also showed that colour attributes were not strongly associated with the observed variation of consumption levels, whereas apparent biomass and aggregation size did correlate with the observed variation in fungivory. Furthermore, specific identity correlated with fungivory. It was concluded that coloration patterns may not be important for fungivory, whereas genet size and species identity (probably via characteristics unrelated to apparency, such as mycotoxins and nutritional value) seemed to be critical factors.


2012 ◽  
Vol 114-115 ◽  
pp. 67-72 ◽  
Author(s):  
Mirella Kanerva ◽  
Heli Routti ◽  
Yael Tamuz ◽  
Madeleine Nyman ◽  
Mikko Nikinmaa

2016 ◽  
Vol 151 ◽  
pp. 244-250 ◽  
Author(s):  
Milton Levin ◽  
Erika Gebhard ◽  
Lindsay Jasperse ◽  
Jean-Pierre Desforges ◽  
Rune Dietz ◽  
...  

2017 ◽  
Vol 284 (1864) ◽  
pp. 20171551 ◽  
Author(s):  
Paul R. Muir ◽  
Paul A. Marshall ◽  
Ameer Abdulla ◽  
J. David Aguirre

Mass bleaching associated with unusually high sea temperatures represents one of the greatest threats to corals and coral reef ecosystems. Deeper reef areas are hypothesized as potential refugia, but the susceptibility of Scleractinian species over depth has not been quantified. During the most severe bleaching event on record, we found up to 83% of coral cover severely affected on Maldivian reefs at a depth of 3–5 m, but significantly reduced effects at 24–30 m. Analysis of 153 species' responses showed depth, shading and species identity had strong, significant effects on susceptibility. Overall, 73.3% of the shallow-reef assemblage had individuals at a depth of 24–30 m with reduced effects, potentially mitigating local extinction and providing a source of recruits for population recovery. Although susceptibility was phylogenetically constrained, species-level effects caused most lineages to contain some partially resistant species. Many genera showed wide variation between species, including Acropora, previously considered highly susceptible. Extinction risk estimates showed species and lineages of concern and those likely to dominate following repeated events. Our results show that deeper reef areas provide refuge for a large proportion of Scleractinian species during severe bleaching events and that the deepest occurring individuals of each population have the greatest potential to survive and drive reef recovery.


Sign in / Sign up

Export Citation Format

Share Document