scholarly journals Lipidomics of Environmental Microbial Communities. II: Characterization Using Molecular Networking and Information Theory

2021 ◽  
Vol 12 ◽  
Author(s):  
Su Ding ◽  
Nicole J. Bale ◽  
Ellen C. Hopmans ◽  
Laura Villanueva ◽  
Milou G. I. Arts ◽  
...  

Structurally diverse, specialized lipids are crucial components of microbial membranes and other organelles and play essential roles in ecological functioning. The detection of such lipids in the environment can reveal not only the occurrence of specific microbes but also the physicochemical conditions to which they are adapted to. Traditionally, liquid chromatography coupled with mass spectrometry allowed for the detection of lipids based on chromatographic separation and individual peak identification, resulting in a limited data acquisition and targeting of certain lipid groups. Here, we explored a comprehensive profiling of microbial lipids throughout the water column of a marine euxinic basin (Black Sea) using ultra high-pressure liquid chromatography coupled with high-resolution tandem mass spectrometry (UHPLC-HRMS/MS). An information theory framework combined with molecular networking based on the similarity of the mass spectra of lipids enabled us to capture lipidomic diversity and specificity in the environment, identify novel lipids, differentiate microbial sources within a lipid group, and discover potential biomarkers for biogeochemical processes. The workflow presented here allows microbial ecologists and biogeochemists to process quickly and efficiently vast amounts of lipidome data to understand microbial lipids characteristics in ecosystems.

2009 ◽  
Vol 394 (7) ◽  
pp. 1919-1930 ◽  
Author(s):  
Yveline Henchoz ◽  
Davy Guillarme ◽  
Sophie Martel ◽  
Serge Rudaz ◽  
Jean-Luc Veuthey ◽  
...  

Author(s):  
Luferov An ◽  
Kartashova Nv ◽  
Strelyaeva Av ◽  
Kuznetcov Rm

Objective: The study was carried out with an objective to characterize the possible bioactive phytochemical constituents from fruits of Schisandra chinensis Bail. by liquid chromatography–mass spectrometry analysis.Methods: Plant material was collected from Schisandra chinensis during August–October. The dried plant fruits were extracted with solvents using ethanol 95% extractor. The results of chromatography–MS analysis performed on the instrument Agilent Technologies established the presence of major and minor components. It was conducted a qualitative and quantitative comparison of infusions using software ChemStationE 02.00 and full library of mass spectra NIST 05.


Sign in / Sign up

Export Citation Format

Share Document