scholarly journals Pyomelanin Synthesis in Alternaria alternata Inhibits DHN-Melanin Synthesis and Decreases Cell Wall Chitin Content and Thickness

2021 ◽  
Vol 12 ◽  
Author(s):  
Chantal Fernandes ◽  
Marta Mota ◽  
Lillian Barros ◽  
Maria Inês Dias ◽  
Isabel C. F. R. Ferreira ◽  
...  

The genus Alternaria includes several of fungi that are darkly pigmented by DHN-melanin. These are pathogenic to plants but are also associated with human respiratory allergic diseases and with serious infections in immunocompromised individuals. The present work focuses on the alterations of the composition and structure of the hyphal cell wall of Alternaria alternata occuring under the catabolism of L-tyrosine and L-phenylalanine when cultured in minimal salt medium (MM). Under these growing conditions, we observed the released of a brown pigment into the culture medium. FTIR analysis demonstrates that the produced pigment is chemically identical to the pigment released when the fungus is grown in MM with homogentisate acid (HGA), the intermediate of pyomelanin, confirming that this pigment is pyomelanin. In contrast to other fungi that also synthesize pyomelanin under tyrosine metabolism, A. alternata inhibits DHN-melanin cell wall accumulation when pyomelanin is produced, and this is associated with reduced chitin cell wall content. When A. alternata is grown in MM containing L-phenylalanine, a L-tyrosine percursor, pyomelanin is synthesized but only at trace concentrations and A. alternata mycelia display an albino-like phenotype since DHN-melanin accumulation is inhibited. CmrA, the transcription regulator for the genes coding for the DHN-melanin pathway, is involved in the down-regulation of DHN-melanin synthesis when pyomelanin is being synthetized, since the CMRA gene and genes of the enzymes involved in DHN-melanin synthesis pathway showed a decreased expression. Other amino acids do not trigger pyomelanin synthesis and DHN-melanin accumulation in the cell wall is not affected. Transmission and scanning electron microscopy show that the cell wall structure and surface decorations are altered in L-tyrosine- and L-phenylalanine-grown fungi, depending on the pigment produced. In summary, growth in presence of L-tyrosine and L-phenylalanine leads to pigmentation and cell wall changes, which could be relevant to infection conditions where these amino acids are expected to be available.

1972 ◽  
Vol 18 (4) ◽  
pp. 423-427 ◽  
Author(s):  
K. A. Killick

Growth of Rhodotorula aurantiaca in a medium supplemented with sulfur amino acids led to the synthesis and accumulation of S-adenosylmethionine, which was accompanied by a reduction in the total contents of carotenoid pigments and an increased sensitivity of the cell walls to snail gut enzymes (Helix pomatia) as judged by spheroplast formation. Walls isolated from supplemented cultures contained increased amounts of lipid and mannan but had a reduced content of protein and alkali-insoluble carbohydrate. The chemical modifications of the cell wall, which resulted as an indirect consequence of excessive S-adenosylmethionine synthesis, are interpreted to explain the ease with which sulfur amino acid-supplemented cultures of R. aurantiaca are converted to spheroplasts as well as their tendency to aggregate.


1999 ◽  
Vol 45 (5) ◽  
pp. 353-359 ◽  
Author(s):  
Phyllis C Braun

Numerous ultrastructural and biochemical analyses have been performed to characterize the cell wall composition and structure of Candida albicans. However, little investigation has focused on how subtle differences in cell wall structure influence the intracellular transport of amino acids and monosaccharides. In this study C. albicans 4918 and ATCC 10231 were grown in culture conditions capable of modifying surface mannoproteins and induced surface hydrophobic or hydrophilic yeast cell wall states. Subcultures of these hydrophobic and hydrophilic yeasts were subsequently incubated with one of seven L-[3H] amino acids: glycine, leucine, proline, serine, aspartic acid, lysine, or arginine. The transport of [3H] mannose and [3H] N-acetyl-D-glucosamine were also investigated. This study revealed significant strain differences (P [Formula: see text] 0.05) between hydrophilic and hydrophobic yeast transport of these nutrients throughout a 2 h incubation. Hydrophilic cultures of 4918 and ATCC 10231 transported nearly two times more (pmol mg-1dry weight) proline, mannose, and N-acetyl-D-glucosamine than hydrophobic yeast. Hydrophobic cultures preferentially incorporated serine and aspartic acid in both these strains. Strain variation was indicated with the transport of leucine, lysine, and arginine, as follows: experiments showed that hydrophilic 4918 cultures selectively transported leucine, lysine, and arginine, whereas, the hydrophobic ATCC 10231 cultures incorporated these amino acids.Key words: Candida albicans, mannoproteins, amino acid transport.


1966 ◽  
Vol 12 (3) ◽  
pp. 471-475 ◽  
Author(s):  
Ralph Mitchell ◽  
Naama Sabar

Hyphal cell walls were prepared by ultrasonication. Glucose was the only sugar detected in both species. Evidence was obtained indicating that the Pythium butleri Subram. glucan is beta 1,2-linked, and that the glucan of Pythium myriotylum Drechsler is beta 1,4-linked. Sixteen amino acids were detected in P. butleri cell wall hydrolysates. Four of these amino acids were absent from P. myriotylum preparations. Similar quantities of lipid were found in both species. The significance of these data for fungal classification is discussed.


2019 ◽  
Author(s):  
Sylvia L. Rivera ◽  
Akbar Espaillat ◽  
Arjun K. Aditham ◽  
Peyton Shieh ◽  
Chris Muriel-Mundo ◽  
...  

Transpeptidation reinforces the structure of cell wall peptidoglycan, an extracellular heteropolymer that protects bacteria from osmotic lysis. The clinical success of transpeptidase-inhibiting β-lactam antibiotics illustrates the essentiality of these cross-linkages for cell wall integrity, but the presence of multiple, seemingly redundant transpeptidases in many bacterial species makes it challenging to determine cross-link function precisely. Here we present a technique to covalently link peptide strands by chemical rather than enzymatic reaction. We employ bio-compatible click chemistry to induce triazole formation between azido- and alkynyl-D-alanine residues that are metabolically installed in the cell walls of Gram-positive and Gram-negative bacteria. Synthetic triazole cross-links can be visualized by substituting azido-D-alanine with azidocoumarin-D-alanine, an amino acid derivative that undergoes fluorescent enhancement upon reaction with terminal alkynes. Cell wall stapling protects the model bacterium Escherichia coli from β-lactam treatment. Chemical control of cell wall structure in live bacteria can provide functional insights that are orthogonal to those obtained by genetics.<br>


2021 ◽  
Vol 06 ◽  
Author(s):  
Ayekpam Chandralekha Devi ◽  
G. K. Hamsavi ◽  
Simran Sahota ◽  
Rochak Mittal ◽  
Hrishikesh A. Tavanandi ◽  
...  

Abstract: Algae (both micro and macro) have gained huge attention in the recent past for their high commercial value products. They are the source of various biomolecules of commercial applications ranging from nutraceuticals to fuels. Phycobiliproteins are one such high value low volume compounds which are mainly obtained from micro and macro algae. In order to tap the bioresource, a significant amount of work has been carried out for large scale production of algal biomass. However, work on downstream processing aspects of phycobiliproteins (PBPs) from algae is scarce, especially in case of macroalgae. There are several difficulties in cell wall disruption of both micro and macro algae because of their cell wall structure and compositions. At the same time, there are several challenges in the purification of phycobiliproteins. The current review article focuses on the recent developments in downstream processing of phycobiliproteins (mainly phycocyanins and phycoerythrins) from micro and macroalgae. The current status, the recent advancements and potential technologies (that are under development) are summarised in this review article besides providing future directions for the present research area.


2021 ◽  
Vol 9 (6) ◽  
pp. 1323
Author(s):  
Etai Boichis ◽  
Nadejda Sigal ◽  
Ilya Borovok ◽  
Anat A. Herskovits

Infection of mammalian cells by Listeria monocytogenes (Lm) was shown to be facilitated by its phage elements. In a search for additional phage remnants that play a role in Lm’s lifecycle, we identified a conserved locus containing two XRE regulators and a pair of genes encoding a secreted metzincin protease and a lipoprotein structurally similar to a TIMP-family metzincin inhibitor. We found that the XRE regulators act as a classic CI/Cro regulatory switch that regulates the expression of the metzincin and TIMP-like genes under intracellular growth conditions. We established that when these genes are expressed, their products alter Lm morphology and increase its sensitivity to phage mediated lysis, thereby enhancing virion release. Expression of these proteins also sensitized the bacteria to cell wall targeting compounds, implying that they modulate the cell wall structure. Our data indicate that these effects are mediated by the cleavage of the TIMP-like protein by the metzincin, and its subsequent release to the extracellular milieu. While the importance of this locus to Lm pathogenicity remains unclear, the observation that this phage-associated protein pair act upon the bacterial cell wall may hold promise in the field of antibiotic potentiation to combat antibiotic resistant bacterial pathogens.


Sign in / Sign up

Export Citation Format

Share Document