scholarly journals Identification and Antibiotic Profiling of Wohlfahrtiimonas chitiniclastica, an Underestimated Human Pathogen

2021 ◽  
Vol 12 ◽  
Author(s):  
Anna Kopf ◽  
Boyke Bunk ◽  
Sina M. Coldewey ◽  
Florian Gunzer ◽  
Thomas Riedel ◽  
...  

In the past 12 years, several case reports have clearly demonstrated that Wohlfahrtiimonas chitiniclastica is capable of causing sepsis and bacteremia in humans. However, since most clinicians are not familiar with this species, little is known about its pathogenicity and treatment options while it is as rare but underestimated human pathogen. Therefore, a larger strain collection is required so that methods can be identified that are most suitable to obtain rapid and reliable identification. Moreover, the antimicrobial resistance profile needs to be elucidated in order to explore possible treatment options. Over a period of 6 years, we therefore have collected a total of 14 W. chitiniclastica isolates in routine diagnostics, which now served as the basis for a comprehensive characterization with respect to identification and antibiotic profiling. We compared the accuracy and convenience of several identification techniques in which MALDI-TOF MS and sequencing of the 16S rRNA gene have proven to be suitable for identification of W. chitiniclastica. In addition, whole genome sequencing (WGS)-based digital DNA-DNA hybridization (dDDH) was used as a reference method for strain identification, and surprised with the detection of a novel W. chitiniclastica subspecies. A combination of in silico and in vitro analyses revealed a first insight into the antimicrobial resistance profile and the molecular basis of antimicrobial resistance. Based on our findings, trimethoprim/sulfamethoxazole, levofloxacin, and cephalosporins (e.g., ceftazidime) may be the best antibiotics to use in order to treat infections caused by W. chitiniclastica, while resistance to fosfomycin, amikacin and tobramycin is observed.

2017 ◽  
Author(s):  
Ángela Galán-Relaño ◽  
Belén Barrero-Domínguez ◽  
Almudena Casamayor ◽  
Fernando Cardoso-Toset ◽  
Ana Lucía Solarte ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 288
Author(s):  
Sonia Sciortino ◽  
Pietro Arculeo ◽  
Vincenzina Alio ◽  
Cinzia Cardamone ◽  
Luisa Nicastro ◽  
...  

Arcobacter spp. are emerging waterborne and foodborne zoonotic pathogens responsible for gastroenteritis in humans. In this work, we evaluated the occurrence and the antimicrobial resistance profile of Arcobacter isolates recovered from different aquatic sources. Besides, we searched for Arcobacter spp. in seaweeds and the corresponding seawater samples. Bacteriological and molecular methods applied to 100 samples led to the isolation of 28 Arcobacter isolates from 27 samples. The highest prevalence was detected in rivers followed by artificial ponds, streams, well waters, and spring waters. Seaweeds contained a higher percentage of Arcobacter than the corresponding seawater samples. The isolates were identified as Arcobacter butzleri (96.4%) and Arcobacter cryaerophilus (3.6%). All the isolates showed a multi-drug resistance profile, being resistant to at least three different classes of antibiotics. Molecular analysis of genetic determinants responsible for tetracycline resistance in nine randomly chosen isolates revealed the presence of tetO and/or tetW. This work confirms the occurrence and the continuous emergence of antibiotic-resistant Arcobacter strains in environmental samples; also, the presence of quinolone-resistant Arcobacter spp. in aquatic sources used for water supply and irrigation represents a potential risk for human health.


2015 ◽  
Vol 35 (9) ◽  
pp. 775-780 ◽  
Author(s):  
Marcos R.A. Ferreira ◽  
Talícia dos S. Silva ◽  
Ariel E. Stella ◽  
Fabricio R. Conceição ◽  
Edésio F. dos Reis ◽  
...  

Abstract: In order to detect virulence factors in Shiga toxin-producing Escherichia coli (STEC) isolates and investigate the antimicrobial resistance profile, rectal swabs were collected from healthy sheep of the races Santa Inês and Dorper. Of the 115 E. coli isolates obtained, 78.3% (90/115) were characterized as STEC, of which 52.2% (47/90) carried stx1 gene, 33.3% (30/90) stx2 and 14.5% (13/90) both genes. In search of virulence factors, 47.7% and 32.2% of the isolates carried the genes saa and cnf1. According to the analysis of the antimicrobial resistance profile, 83.3% (75/90) were resistant to at least one of the antibiotics tested. In phylogenetic classification grouped 24.4% (22/90) in group D (pathogenic), 32.2% (29/90) in group B1 (commensal) and 43.3% (39/90) in group A (commensal). The presence of several virulence factors as well as the high number of multiresistant isolates found in this study support the statement that sheep are potential carriers of pathogens threatening public health.


Author(s):  
S. L. Owolabi ◽  
I. A. Azeez

The alarming increase of antibiotic resistance of Escherichia coli has posed a great challenge in the public health sector. Thus, this microorganism is a leading cause of different human infections and it can be found in various environments. The aim of this study is to investigate the antimicrobial susceptibility patterns and the multiple antimicrobial resistance profile of Escherichia coli isolates obtained from some hospitals in Abeokuta, Ogun State, Nigeria. Isolates of E. coli were obtained from different clinical samples and were re-identified morphologically and biochemically. E. coli was isolated from 30% out of a total of 70 clinical samples analyzed for isolation and identification. The isolation rate of E. coli was highest in urine samples 10(47.6%) when compared to other clinical samples. There was significant increase in the resistance rate of E. coli to tetracycline (14.3%), ceftazidime (14.2%), and ampicillin (14.2%).Also, an increased sensitivity rate to augmentin (71.4%), ofloxacin (66.7%), cefuroxime (66.7%), ciprofloxacin (61.9%) and ceftazidime (61.9%) were observed. Furthermore, the overall multiple drug resistance rates obtained was 14(66.7%) and it was established that, multiple antimicrobial resistance of the E. coli isolates was plasmid mediated. E. coli isolates exhibited high resistance rate to multiple antimicrobial agents, however, its sensitivity to augmentin, ofloxacin, cefuroxime, ciprofloxacin and ceftazidime showed that these antimicrobials are still effective against E. coli infections in the study area.


2019 ◽  
Vol 54 (4) ◽  
pp. 290-293 ◽  
Author(s):  
Vânia Santos Braz ◽  
Jéssica Aparecida Silva Moretto ◽  
Ana Flavia Tonelli Fernandes ◽  
Eliana Guedes Stehling

Infection ◽  
2003 ◽  
Vol 31 (4) ◽  
pp. 244-246 ◽  
Author(s):  
A. S. Arisoy ◽  
B. Altinişik ◽  
Ö. Tünger ◽  
S. Kurutepe ◽  
Ç. Ispahi

Sign in / Sign up

Export Citation Format

Share Document