scholarly journals The Transient Receptor Potential Channel Yvc1 Deletion Recovers the Growth Defect of Calcineurin Mutant Under Endoplasmic Reticulum Stress in Candida albicans

2021 ◽  
Vol 12 ◽  
Author(s):  
Liping Peng ◽  
Jiawen Du ◽  
Runfan Zhang ◽  
Nali Zhu ◽  
He Zhao ◽  
...  

Transient receptor potential (TRP) channel Yvc1 was related with hyphal growth, oxidative stress response, and pathogenicity. Calcineurin subunit Cnb1 was activated immediately in yeasts when exposed to severe stimulation. However, the relationship between Yvc1 and Cnb1-governed calcium ions and endoplasmic reticulum (ER) stress response remains unrevealed. In this study, we found that the mutant cnb1Δ/Δ was sensitive to TN, which was related with the overexpression of membrane calcium ion channels that could increase the cytosol calcium concentration. However, the growth of the cnb1Δ/Δyvc1Δ/Δ mutant was recovered and its cell vitality was better than the cnb1Δ/Δ strain. Meanwhile, the cellular calcium concentration was decreased and its fluctuation was weakened under ER stress in the cnb1Δ/Δyvc1Δ/Δ strain. To verify the regulation role of Yvc1 in the calcium concentration, we found that the addition of CaCl2 led to the worse viability, while the growth state was relieved under the treatment of EGTA in the cnb1Δ/Δ strain. In conclusion, the deletion of YVC1 could reduce the cellular calcium and relieve the ER stress sensitivity of the cnb1Δ/Δ strain. Thereby, our findings shed a novel light on the relationship between the Yvc1-governed cellular calcium concentration and ER stress response in C. albicans.

mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Oanh H. Pham ◽  
Bokyung Lee ◽  
Jasmine Labuda ◽  
A. Marijke Keestra-Gounder ◽  
Mariana X. Byndloss ◽  
...  

ABSTRACT The inflammatory response to Chlamydia infection is likely to be multifactorial and involve a variety of ligand-dependent and -independent recognition pathways. We previously reported the presence of NOD1/NOD2-dependent endoplasmic reticulum (ER) stress-induced inflammation during Chlamydia muridarum infection in vitro, but the relevance of this finding to an in vivo context is unclear. Here, we examined the ER stress response to in vivo Chlamydia infection. The induction of interleukin 6 (IL-6) production after systemic Chlamydia infection correlated with expression of ER stress response genes. Furthermore, when tauroursodeoxycholate (TUDCA) was used to inhibit the ER stress response, an increased bacterial burden was detected, suggesting that ER stress-driven inflammation can contribute to systemic bacterial clearance. Mice lacking both NOD1 and NOD2 or RIP2 exhibited slightly higher systemic bacterial burdens after infection with Chlamydia. Overall, these data suggest a model where RIP2 and NOD1/NOD2 proteins link ER stress responses with the induction of Chlamydia-specific inflammatory responses. IMPORTANCE Understanding the initiation of the inflammatory response during Chlamydia infection is of public health importance given the impact of this disease on young women in the United States. Many young women are chronically infected with Chlamydia but are asymptomatic and therefore do not seek treatment, leaving them at risk of long-term reproductive harm due to inflammation in response to infection. Our manuscript explores the role of the endoplasmic reticulum stress response pathway initiated by an innate receptor in the development of this inflammation.


2018 ◽  
Vol 120 (2) ◽  
pp. 509-524 ◽  
Author(s):  
John N. Barrett ◽  
Samantha Rincon ◽  
Jayanti Singh ◽  
Cristina Matthewman ◽  
Julio Pasos ◽  
...  

Inner ear spiral ganglion neurons were cultured from day 4 postnatal mice and loaded with a fluorescent Ca2+ indicator (fluo-4, -5F, or -5N). Pulses of infrared radiation (IR; 1,863 nm, 200 µs, 200–250 Hz for 2–5 s, delivered via an optical fiber) produced a rapid, transient temperature increase of 6–12°C (above a baseline of 24–30°C). These IR pulse trains evoked transient increases in both nuclear and cytosolic Ca2+ concentration ([Ca2+]) of 0.20–1.4 µM, with a simultaneous reduction of [Ca2+] in regions containing endoplasmic reticulum (ER). IR-induced increases in cytosolic [Ca2+] continued in medium containing no added Ca2+ (±Ca2+ buffers) and low [Na+], indicating that the [Ca2+] increase was mediated by release from intracellular stores. Consistent with this hypothesis, the IR-induced [Ca2+] response was prolonged and eventually blocked by inhibition of ER Ca2+-ATPase with cyclopiazonic acid, and was also inhibited by a high concentration of ryanodine and by inhibitors of inositol (1,4,5)-trisphosphate (IP3)-mediated Ca2+ release (xestospongin C and 2-aminoethoxydiphenyl borate). The thermal sensitivity of the response suggested involvement of warmth-sensitive transient receptor potential (TRP) channels. The IR-induced [Ca2+] increase was inhibited by TRPV4 inhibitors (HC-067047 and GSK-2193874), and immunostaining of spiral ganglion cultures demonstrated the presence of TRPV4 and TRPM2 that colocalized with ER marker GRP78. These results suggest that the temperature sensitivity of IR-induced [Ca2+] elevations is conferred by TRP channels on ER membranes, which facilitate Ca2+ efflux into the cytosol and thereby contribute to Ca2+-induced Ca2+-release via IP3 and ryanodine receptors. NEW & NOTEWORTHY Infrared radiation-induced photothermal effects release Ca2+ from the endoplasmic reticulum of primary spiral ganglion neurons. This Ca2+ release is mediated by activation of transient receptor potential (TRPV4) channels and involves amplification by Ca2+-induced Ca2+-release. The neurons immunostained for warmth-sensitive channels, TRPV4 and TRPM2, which colocalize with endoplasmic reticulum. Pulsed infrared radiation provides a novel experimental tool for releasing intracellular Ca2+, studying Ca2+ regulatory mechanisms, and influencing neuronal excitability.


2020 ◽  
Vol 30 (9) ◽  
pp. 672-675 ◽  
Author(s):  
Kashi Raj Bhattarai ◽  
Manoj Chaudhary ◽  
Hyung-Ryong Kim ◽  
Han-Jung Chae

2011 ◽  
Vol 11 ◽  
pp. 1056-1067 ◽  
Author(s):  
Huayan Pang ◽  
Pan Yi ◽  
Ping Wu ◽  
Zhuoya Liu ◽  
Zhongjie Liu ◽  
...  

Excessive oxidative stress, decreased antioxidant capacity, and enhanced cellular calcium levels are initial factors that cause endothelial cell (EC) hyperpermeability, which represents a crucial event in the pathogenesis of pre-eclampsia. Lipoxin A4 (LXA4) strongly attenuated lipopolysaccharide (LPS)-induced hyperpermeability through maintaining the normal expression of VE-cadherin and β-catenin. This effect was mainly mediated by a specific LXA4receptor. LXA4could also obviously inhibit LPS-induced elevation of the cellular calcium level and up-regulation of the transient receptor potential protein family C 1, an important calcium channel in ECs. At the same time, LXA4strongly blocked LPS-triggered reactive oxidative species production, while it promoted the expression of the NF-E2 related factor 2 (Nrf2) protein. Our findings demonstrate that LXA4could prevent the EC hyperpermeability induced by LPS in human umbilical vein endothelial cells (HUVECs), under which the possible mechanism is through Nrf2 as well as Ca2+-sensitive pathways.


Author(s):  
Fernanda L.B. Mügge ◽  
Aristóbolo M. Silva

AbstractOver the past decade, a handful of evidence has been provided that nonsteroidal anti-inflammatory drugs (NSAIDs) display effects on the homeostasis of the endoplasmic reticulum (ER). Their uptake into cells will eventually lead to activation or inhibition of key molecules that mediate ER stress responses, raising not only a growing interest for a pharmacological target in ER stress responses but also important questions how the ER-stress mediated effects induced by NSAIDs could be therapeutically advantageous or not. We review here the toxicity effects and therapeutic applications of NSAIDs involving the three majors ER stress arms namely PERK, IRE1, and ATF6. First, we provide brief introduction on the well-established and characterized downstream events mediated by these ER stress players, followed by presentation of the NSAIDs compounds and mode of action, and finally their effects on ER stress response. NSAIDs present promising drug agents targeting the components of ER stress in different aspects of cancer and other diseases, but a better comprehension of the mechanisms underlying their benefits and harms will certainly pave the road for several diseases’ therapy.


2008 ◽  
Vol 19 (8) ◽  
pp. 3203-3211 ◽  
Author(s):  
Pinaki Chaudhuri ◽  
Scott M. Colles ◽  
Manjunatha Bhat ◽  
David R. Van Wagoner ◽  
Lutz Birnbaumer ◽  
...  

Canonical transient receptor potential (TRPC) channels are opened by classical signal transduction events initiated by receptor activation or depletion of intracellular calcium stores. Here, we report a novel mechanism for opening TRPC channels in which TRPC6 activation initiates a cascade resulting in TRPC5 translocation. When endothelial cells (ECs) are incubated in lysophosphatidylcholine (lysoPC), rapid translocation of TRPC6 initiates calcium influx that results in externalization of TRPC5. Activation of this TRPC6–5 cascade causes a prolonged increase in intracellular calcium concentration ([Ca2+]i) that inhibits EC movement. When TRPC5 is down-regulated with siRNA, the lysoPC-induced rise in [Ca2+]i is shortened and the inhibition of EC migration is lessened. When TRPC6 is down-regulated or EC from TRPC6−/− mice are studied, lysoPC has minimal effect on [Ca2+]i and EC migration. In addition, TRPC5 is not externalized in response to lysoPC, supporting the dependence of TRPC5 translocation on the opening of TRPC6 channels. Activation of this novel TRPC channel cascade by lysoPC, resulting in the inhibition of EC migration, could adversely impact on EC healing in atherosclerotic arteries where lysoPC is abundant.


Sign in / Sign up

Export Citation Format

Share Document