scholarly journals Regulation of Tripartite Motif-Containing Proteins on Immune Response and Viral Evasion

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiu-Zhong Zhang ◽  
Fu-Huang Li ◽  
Xiao-Jia Wang

Tripartite motif-containing proteins (TRIMs), exhibiting ubiquitin E3 ligase activity, are involved in regulation of not only autophagy and apoptosis but also pyrotosis and antiviral immune responses of host cells. TRIMs play important roles in modulating signaling pathways of antiviral immune responses via type I interferon, NF-κB, Janus kinase/signal transducer and activator of transcription (JAK/STAT), and Nrf2. However, viruses are able to antagonize TRIM activity or evenly utilize TRIMs for viral replication. This communication presents the current understanding of TRIMs exploited by viruses to evade host immune response.

2021 ◽  
Author(s):  
Cristhian Cadena ◽  
Max Paget ◽  
Hai-Tao Wang ◽  
Ehyun Kim ◽  
Sadeem Ahmad ◽  
...  

SummaryProper defense against microbial infection depends on the controlled activation of the immune system. This is particularly important for the innate immune receptors that recognize viral double-stranded RNA (dsRNA) and initiate antiviral immune responses with the potential of triggering systemic inflammation and immunopathology. How the functions of the dsRNA receptors and their downstream effector molecules are coordinately regulated to avoid excessive immune response is poorly understood. We here demonstrate that stress granules (SGs), biomolecular condensates that form in response to various stresses including viral dsRNA1, 2, play key roles in regulating dsRNA-triggered immune response. Upon dsRNA stimulation, SGs recruit many innate immune molecules, including RIG-I-like receptors (RLRs), protein kinase R (PKR) and oligoadenylate synthases (OASes), target these molecules and dsRNA for autophagy and limit their functions through sequestration. In the absence of SGs, dsRNA stimulation results in hyperactivation of inflammatory signaling pathways, global translational arrest and bulk RNA degradation, altogether compromising the cellular capacity to restore homeostasis and triggering cell death. In contrast to most dsRNA-induced immune signaling pathways that are hyperactivated in the absence of SGs, a sub-branch of the RLR pathway (IRF3-dependent type I interferon signaling) shows time-dependent changes, where the initial spike in signaling is followed by a significant drop due to increased caspase-dependent negative feedback regulation. This highlights the role of SGs in regulating the delicate balance between the type I interferon pathway and cell death. Altogether, our data suggest that cells utilize SGs as shock absorbers to moderate antiviral innate immune response, thereby allowing cells to guard against its own immune system as well as viruses.


2015 ◽  
Vol 89 (24) ◽  
pp. 12330-12340 ◽  
Author(s):  
Zachary B. Zalinger ◽  
Ruth Elliott ◽  
Kristine M. Rose ◽  
Susan R. Weiss

ABSTRACTInfection with the murine coronavirus mouse hepatitis virus (MHV) activates the pattern recognition receptors melanoma differentiation-associated gene 5 (MDA5) and Toll-like receptor 7 (TLR7) to induce transcription of type I interferon. Type I interferon is crucial for control of viral replication and spread in the natural host, but the specific contributions of MDA5 signaling to this pathway as well as to pathogenesis and subsequent immune responses are largely unknown. In this study, we use MHV infection of the liver as a model to demonstrate that MDA5 signaling is critically important for controlling MHV-induced pathology and regulation of the immune response. Mice deficient in MDA5 expression (MDA5−/−mice) experienced more severe disease following MHV infection, with reduced survival, increased spread of virus to additional sites of infection, and more extensive liver damage than did wild-type mice. Although type I interferon transcription decreased in MDA5−/−mice, the interferon-stimulated gene response remained intact. Cytokine production by innate and adaptive immune cells was largely intact in MDA5−/−mice, but perforin induction by natural killer cells and levels of interferon gamma, interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α) in serum were elevated. These data suggest that MDA5 signaling reduces the severity of MHV-induced disease, at least in part by reducing the intensity of the proinflammatory cytokine response.IMPORTANCEMulticellular organisms employ a wide range of sensors to detect viruses and other pathogens. One such sensor, MDA5, detects viral RNA and triggers induction of type I interferons, chemical messengers that induce inflammation and help regulate the immune responses. In this study, we sought to determine the role of MDA5 during infection with mouse hepatitis virus, a murine coronavirus used to model viral hepatitis as well as other human diseases. We found that mice lacking the MDA5 sensor were more susceptible to infection than were mice with MDA5 and experienced decreased survival. Viral replication in the liver was similar in mice with and without MDA5, but liver damage was increased in MDA5−/−mice, suggesting that the immune response is causing the damage. Production of several proinflammatory cytokines was elevated in MDA5−/−mice, suggesting that MDA5 may be responsible for keeping pathological inflammatory responses in check.


2014 ◽  
Vol 3 (6) ◽  
pp. 314-318
Author(s):  
Mansi Shrivastava ◽  
Sarfaraz Alam ◽  
L. K. Dwivedi

The suppressors of cytokine signaling (SOCS) are a cytoplasmic protein family that completes a negative feedback loop to attenuate signal transduction from cytokines through the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. They work as a natural precaution to pre-vent excessive immune responses that could cause collateral damage to body tissues. But viruses use SOCS proteins to suppress the proportionate immune response also so that a vulnerable environment can be developed in host body to let them grow freely. In several cases, an increased expression of SOCS proteins has been reported in virus infected individuals, which is believed to be induced by the viruses to inhibit the anti-proliferative and antiviral activity of cytokines (Interferon) of host body. Viruses including HIV hijack the expression of SOCS proteins and manipulate them in a way where they support the onset of antigens in host body by suppressing the cell sig-nalling of immune response. Detailed mechanism of the same and an alter-native way to stop viral infection by restoring the normal SOCS expression is discussed in the present review.


Author(s):  
Pedro Jesús Gómez-Arias ◽  
Francisco Gómez-García ◽  
Jorge Hernández-Parada ◽  
Ana María Montilla-López ◽  
Juan Ruano ◽  
...  

2021 ◽  
Author(s):  
Haidi Karam-Allah Ramadan ◽  
Gamal Badr ◽  
Nancy K Ramadan ◽  
Aml Sayed

Abstract The use of direct-acting antivirals (DAAs) therapy for the treatment of hepatitis C virus (HCV) results in a high sustained virological response (SVR) and subsequently alters liver immunologic environment. However, hepatocellular carcinoma (HCC) may occur after DAAs treatment. We aimed to clarify changes of immune responses, PI3K/AKT and JAK/STAT signaling pathways in HCV-induced liver diseases and HCC following DAAs treatment. Four cohorts are classified as chronic HCV patients, HCV-related cirrhosis without HCC, HCV-related cirrhosis and HCC, and healthy control group. The patient groups were further divided into treated or untreated with DAAs with SVR12. Increased percentages of CD3, CD8 and CD4, decreased CD4/FoxP3/CD25, CD8/PD-1 and CD19/PDL-1 were found in DAAs-treated patients in the three HCV groups. Following DAAs therapy, the levels of ROS, IL-1β, IL-6, IL-8 and TNF-α were significantly decreased in the three HCV groups. Treated HCV patients showed up regulation of p-AKT and p-STAT5 and down regulation of p-STAT3, HIF-1α and COX-2. In conclusion, DAAs enhance the immune response in chronic HCV and liver cirrhosis, hence our study is the first to show change in PI3K/AKT and JAK/STAT signaling pathways in different HCV-induced liver diseases after DAAs. In chronic HCV, DAAs have better impact on the immune response while in liver cirrhosis not all immune changes were prominent.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 675
Author(s):  
Samira Elmanfi ◽  
Mustafa Yilmaz ◽  
Wilson W. S. Ong ◽  
Kofi S. Yeboah ◽  
Herman O. Sintim ◽  
...  

Host cells can recognize cytosolic double-stranded DNAs and endogenous second messengers as cyclic dinucleotides—including c-di-GMP, c-di-AMP, and cGAMP—of invading microbes via the critical and essential innate immune signaling adaptor molecule known as STING. This recognition activates the innate immune system and leads to the production of Type I interferons and proinflammatory cytokines. In this review, we (1) focus on the possible role of bacterial cyclic dinucleotides and the STING/TBK1/IRF3 pathway in the pathogenesis of periodontal disease and the regulation of periodontal immune response, and (2) review and discuss activators and inhibitors of the STING pathway as immune response regulators and their potential utility in the treatment of periodontitis. PubMed/Medline, Scopus, and Web of Science were searched with the terms “STING”, “TBK 1”, “IRF3”, and “cGAS”—alone, or together with “periodontitis”. Current studies produced evidence for using STING-pathway-targeting molecules as part of anticancer therapy, and as vaccine adjuvants against microbial infections; however, the role of the STING/TBK1/IRF3 pathway in periodontal disease pathogenesis is still undiscovered. Understanding the stimulation of the innate immune response by cyclic dinucleotides opens a new approach to host modulation therapies in periodontology.


Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1530
Author(s):  
Alfonso Olaya-Abril ◽  
Rafael Prados-Rosales ◽  
José A. González-Reyes ◽  
Arturo Casadevall ◽  
Liise-anne Pirofski ◽  
...  

Bacterial extracellular vesicles are membranous ultrastructures released from the cell surface. They play important roles in the interaction between the host and the bacteria. In this work, we show how extracellular vesicles produced by four different serotypes of the important human pathogen, Streptococcus pneumoniae, are internalized by murine J774A.1 macrophages via fusion with the membrane of the host cells. We also evaluated the capacity of pneumococcal extracellular vesicles to elicit an immune response by macrophages. Macrophages treated with the vesicles underwent a serotype-dependent transient loss of viability, which was further reverted. The vesicles induced the production of proinflammatory cytokines, which was higher for serotype 1 and serotype 8-derived vesicles. These results demonstrate the biological activity of extracellular vesicles of clinically important pneumococcal serotypes.


Sign in / Sign up

Export Citation Format

Share Document