scholarly journals Pathology Quality Control for Multiplex Immunofluorescence and Image Analysis Assessment in Longitudinal Studies

2021 ◽  
Vol 8 ◽  
Author(s):  
Rossana Lazcano ◽  
Frank Rojas ◽  
Caddie Laberiano ◽  
Sharia Hernandez ◽  
Edwin Roger Parra

Immune profiling of formalin-fixed, paraffin-embedded tissues using multiplex immunofluorescence (mIF) staining and image analysis methodology allows for the study of several biomarkers on a single slide. The pathology quality control (PQC) for tumor tissue immune profiling using digital image analysis of core needle biopsies is an important step in any laboratory to avoid wasting time and materials. Although there are currently no established inclusion and exclusion criteria for samples used in this type of assay, a PQC is necessary to achieve accurate and reproducible data. We retrospectively reviewed PQC data from hematoxylin and eosin (H&E) slides and from mIF image analysis samples obtained during 2019. We reviewed a total of 931 reports from core needle biopsy samples; 123 (13.21%) were excluded during the mIF PQC. The most common causes of exclusion were the absence of malignant cells or fewer than 100 malignant cells in the entire section (n = 42, 34.15%), tissue size smaller than 4 × 1 mm (n = 16, 13.01%), fibrotic tissue without inflammatory cells (n = 12, 9.76%), and necrotic tissue (n = 11, 8.94%). Baseline excluded samples had more fibrosis (90 vs 10%) and less necrosis (5 vs 90%) compared with post-treatment excluded samples. The most common excluded organ site of the biopsy was the liver (n = 19, 15.45%), followed by soft tissue (n = 17, 13.82%) and the abdominal region (n = 15, 12.20%). We showed that the PQC is an important step for image analysis and that the absence of malignant cells is the most limiting sample characteristic for mIF image analysis. We also discuss other challenges that pathologists need to consider to report reliable and reproducible image analysis data.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2832-2832
Author(s):  
N. Scott Reading ◽  
Josef T. Prchal ◽  
Ronald Hoffman ◽  
Mohamed E Salama

Abstract Background: Gene expression profiling studies have demonstrated aberrant expression of inflammatory response genes in myeloproliferative neoplasm (MPN) granulocytes and/or CD34+ cells. Our understanding of the immune response to primary myelofibrosis (PMF) hematopoietic stem cells and tissue-specific microenvironments is not complete due to a limited availability of bone marrow (BM) aspirates and fresh spleen samples from PMF patients. In order to overcome this obstacle, we utilized a novel approach with mRNA enrichment analysis which utilizes formalin fixed, paraffin embedded (FFPE) specimens of BM and spleen from PMF patients to identify immune and other microenvironment cell types and to construct pathway activation patterns. Methods: We applied enzyme-free NanoString nCounter® PanCancer Immune Profiling Panel system (NanoString Technologies, Inc., Seattle, WA) consisting of 770 standard gene panel and 20 custom gene panel for identification of immune cells and assessing immunological milieus in the microenvironement of matched, archival FFPE spleen and BM samples from MPN patients.. Up to 500ng of RNA (at 100ng/ul) isolated from FFPE BM and/or spleen specimens from PMF patients was used for digital expression profiling in accordance with the manufacturer's protocol. The panel included 109 genes that define 24 immune cell types and populations, and 40 housekeeping genes that facilitate sample-to-sample normalization. Data analysis was performed using nSolver software 2.5 and the PanCancer Immune Profiling Advanced Analysis Module (v.1.0.22). Findings identified from the digital expression profiles on cells types were confirmed via immunohistochemical evaluation. Results: Twenty-six archival FFPE tissue samples (13 BM and 13 spleen) obtained from PMF patients who had undergone therapeutic splenectomy and BM biopsy at the same time, and normal tissue controls, were analyzed as described previously (Liew et al 2015). Following data normalization, genes were selected based on P < 0.05 (unpaired t -test) and fold change > 2.0 differentially expressed mRNA levels in the BM (n=208) and spleen (n=108). These genes were distributed across several functional categories including: TNF superfamily (e.g. TNFRS13C, CD70, LTB), signal ligands (cytokine, chemokine) (e.g. JAK3, IFI16, SPP1), B and T cell functions (TIGIT, CXCR5, CXCL14), and cell adhesion (e.g. ITGB3). In supervised clustering of the significantly expressed genes, the first bifurcation of the dendrogram separated controls from PMF samples in both BM and spleen. Twenty-seven genes were significantly differentially expressed by both PMF BM and spleen, compared to control specimens. Interestingly, the PMF BM samples were further separated in a second bifurcation of the dendrogram into 3 subgroups, indicating immune transcriptional diversity within PMF samples (Figure 1). Further characterization of these subgroups and potential clinical relevance are being studied in a larger number of specimens in order to achieve statistical power. Cell type analysis indicated a significant (P =<0.05) difference in activated CD4 T-cells, T helper-1 cells, CD8 T-cells, and B-cells across all BM and spleen samples. Macrophages (P =<0.001) were increased in the spleen, and neutrophils (P =0.01) were increased only in BM samples. A decrease in CD8-positive T-cells in PMF samples (p =0.009) was confirmed using immunohistochemistry with computer assisted image analysis. Heterogeneity of Tregs in PMF spleen samples (n=10) was further confirmed by immunohistochemistry (n-3). Conclusions: Digital immune expression profiling coupled with immunohistochemistry is a novel approach for characterization of tumor microenvironment in fibrotic PMF marrow and spleen. Our preliminary findings indicate a consistent decrease in cytotoxic CD8 T-cells but varying expression of Tregs. In addition, we identified several genes in various immune functional categories within PMF patients that could potentially serve as therapy targets. Disclosures Hoffman: All Cells, LLC: Consultancy, Membership on an entity's Board of Directors or advisory committees; Promedior: Research Funding; Geron: Consultancy, Membership on an entity's Board of Directors or advisory committees. Salama:Promedior: Consultancy.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1601 ◽  
Author(s):  
Gretchen H. Delcambre ◽  
Junjie Liu ◽  
Jenna M. Herrington ◽  
Kelsey Vallario ◽  
Maureen T. Long

Phenotypic characterization of cellular responses in equine infectious encephalitides has had limited description of both peripheral and resident cell populations in central nervous system (CNS) tissues due to limited species-specific reagents that react with formalin-fixed, paraffin embedded tissue (FFPE). This study identified a set of antibodies for investigating the immunopathology of infectious CNS diseases in horses. Multiple commercially available staining reagents and antibodies derived from antigens of various species for manual immunohistochemistry (IHC) were screened. Several techniques and reagents for heat-induced antigen retrieval, non-specific protein blocking, endogenous peroxidase blocking, and visualization-detection systems were tested during IHC protocol development. Boiling of slides in a low pH, citrate-based buffer solution in a double-boiler system was most consistent for epitope retrieval. Pressure-cooking, microwaving, high pH buffers, and proteinase K solutions often resulted in tissue disruption or no reactivity. Optimal blocking reagents and concentrations of each working antibody were determined. Ultimately, a set of monoclonal (mAb) and polyclonal antibodies (pAb) were identified for CD3+(pAb A0452, Dako) T-lymphocytes, CD79αcy+B-lymphocytes (mAb HM57, Dako), macrophages (mAb MAC387, Leica), NF-H+neurons (mAb NAP4, EnCor Biotechnology), microglia/macrophage (pAb Iba-1, Wako), and GFAP+astrocytes (mAb 5C10, EnCor Biotechnology). In paraffin embedded tissues, mAbs and pAbs derived from human and swine antigens were very successful at binding equine tissue targets. Individual, optimized protocols are provided for each positively reactive antibody for analyzing equine neuroinflammatory disease histopathology.


2016 ◽  
Author(s):  
Gretchen H Delcambre ◽  
Junjie Liu ◽  
Jenna M Herrington ◽  
Kelsey Vallario ◽  
Maureen T Long

Phenotypic characterization of cellular responses in equine infectious encephalitides has had limited description of both peripheral and resident cell populations in central nervous system (CNS) tissues due to limited species-specific reagents that react with formalin-fixed, paraffin embedded tissue (FFPE). This study identified a set of antibodies for investigating the immunopathology of infectious CNS diseases in horses. Multiple commercially available staining reagents and antibodies derived from antigens of various species for manual immunohistochemistry (IHC) were screened. Several techniques and reagents for heat-induced antigen retrieval, non-specific protein blocking, endogenous peroxidase blocking, and visualization-detection systems were tested during IHC protocol development. Boiling of slides in a low pH, citrate-based buffer solution in a double-boiler system was most consistent for epitope retrieval. Pressure-cooking, microwaving, high pH buffers, and proteinase K solutions often resulted in tissue disruption or no reactivity. Optimal blocking reagents and concentrations of each working antibody were determined. Ultimately, a set of monoclonal (mAb) and polyclonal antibodies (pAb) were identified for CD3+ (pAb A0452, Dako) T-lymphocytes, CD79αcy+ B-lymphocytes (mAb HM57, Dako), macrophages (mAb MAC387, Leica), NF-H+ neurons (mAb NAP4, EnCor Biotechnology), microglia/macrophage (pAb Iba-1, Wako), and GFAP+ astrocytes (mAb 5C10, EnCor Biotechnology). In paraffin embedded tissues, mAbs and pAbs derived from human and swine antigens were very successful at binding equine tissue targets. Individual, optimized protocols are provided for each positively reactive antibody for analyzing equine neuroinflammatory disease histopathology.


2019 ◽  
Vol 152 (Supplement_1) ◽  
pp. S94-S95
Author(s):  
Victoria Costa ◽  
David Kim ◽  
Melanie Johncilla ◽  
Abha Goyal ◽  
Rema Rao

Abstract Objectives Programmed death-ligand 1 (PD-L1) is an emerging molecular target in anticancer therapy, most notably non–small cell lung cancers. PD-L1 expression in pancreatic adenocarcinomas (PDAs) on surgical specimens is highly variable, with 10% to 60% of tumors showing expression. PD-L1 expression in PDA on endoscopic ultrasound-guided fine needle aspirations (EUS-FNAs) has been rarely studied. Methods Formalin-fixed, paraffin embedded (FFPE) cell blocks (CBs) from 65 EUS-FNA samples of 55 patients, with a diagnosis of PDA, with at least 20% tumor cellularity were retrieved. The cell blocks were originally fixed in CytoRich fixative. Immunohistochemical staining (IHC) for PD-L1 was performed using the M365329-1 (22C3) clone according to the manufacturer’s approved protocol and optimized for the fixation method using appropriate controls. A combined positive score (CPS) defined per CAP guidelines as the total number of positive tumor cells and inflammatory cells as a percentage of the total number of tumor cells was assessed for each case and was grouped as <1, 1-20, or >20. Results Twenty-five samples (38%) from 21 patients showed immunoreactivity to PD-L1, with 21 (32%) having a CPS of <1 and four (6%) having a CPS of 1-20. Eight of these 25 samples had surgical correlates, of which concordant staining was noted in five (62.5%). Of the discordant three, decreased tumor cell sampling in the core biopsy was noted in one. Overall, 20 of 21 patients (95%) with PD-L1 immunoreactivity had disease progression with 17 (81%) associated with metastatic disease and three (14%) with locally advanced disease. Conclusion Immunohistochemical analysis for PD-L1 is feasible on EUS-FNA CB samples when optimized and validated for the fixation method using appropriate controls. PD-L1 expression is seen in only a minority of PDAs, albeit with a very low CPS. The potential role of PD-L1 as a prognostic marker for disease progression needs further exploration.


Author(s):  
Arjun Bhattacharya ◽  
Alina M Hamilton ◽  
Helena Furberg ◽  
Eugene Pietzak ◽  
Mark P Purdue ◽  
...  

Abstract The NanoString RNA counting assay for formalin-fixed paraffin embedded samples is unique in its sensitivity, technical reproducibility and robustness for analysis of clinical and archival samples. While commercial normalization methods are provided by NanoString, they are not optimal for all settings, particularly when samples exhibit strong technical or biological variation or where housekeeping genes have variable performance across the cohort. Here, we develop and evaluate a more comprehensive normalization procedure for NanoString data with steps for quality control, selection of housekeeping targets, normalization and iterative data visualization and biological validation. The approach was evaluated using a large cohort ($N=\kern0.5em 1649$) from the Carolina Breast Cancer Study, two cohorts of moderate sample size ($N=359$ and$130$) and a small published dataset ($N=12$). The iterative process developed here eliminates technical variation (e.g. from different study phases or sites) more reliably than the three other methods, including NanoString’s commercial package, without diminishing biological variation, especially in long-term longitudinal multiphase or multisite cohorts. We also find that probe sets validated for nCounter, such as the PAM50 gene signature, are impervious to batch issues. This work emphasizes that systematic quality control, normalization and visualization of NanoString nCounter data are an imperative component of study design that influences results in downstream analyses.


2020 ◽  
pp. 019262332097053
Author(s):  
Elizabeth A. Chlipala ◽  
Mark Butters ◽  
Miles Brous ◽  
Jessica S. Fortin ◽  
Roni Archuletta ◽  
...  

Digital image analysis (DIA) is impacted by the quality of tissue staining. This study examined the influence of preanalytical variables—staining protocol design, reagent quality, section attributes, and instrumentation—on the performance of automated DIA software. Our hypotheses were that (1) staining intensity is impacted by subtle differences in protocol design, reagent quality, and section composition and that (2) identically programmed and loaded stainers will produce equivalent immunohistochemical (IHC) staining. We tested these propositions by using 1 hematoxylin and eosin stainer to process 13 formalin-fixed, paraffin-embedded (FFPE) mouse tissues and by using 3 identically programmed and loaded immunostainers to process 5 FFPE mouse tissues for 4 cell biomarkers. Digital images of stained sections acquired with a commercial whole slide scanner were analyzed by customizable algorithms incorporated into commercially available DIA software. Staining intensity as viewed qualitatively by an observer and/or quantitatively by DIA was affected by staining conditions and tissue attributes. Intrarun and inter-run IHC staining intensities were equivalent for each tissue when processed on a given stainer but varied measurably across stainers. Our data indicate that staining quality must be monitored for each method and stainer to ensure that preanalytical factors do not impact digital pathology data quality.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Slavica Janeva ◽  
Toshima Z. Parris ◽  
Salmir Nasic ◽  
Shahin De Lara ◽  
Karolina Larsson ◽  
...  

Abstract Background Routine clinical management of breast cancer (BC) currently depends on surrogate subtypes according to estrogen- (ER) and progesterone (PR) receptor, Ki-67, and HER2-status. However, there has been growing demand for reduced immunohistochemistry (IHC) turnaround times. The Xpert® Breast Cancer STRAT4* Assay (STRAT4)*, a standardized test for ESR1/PGR/MKi67/ERBB2 mRNA biomarker assessment, takes less than 2 hours. Here, we compared the concordance between the STRAT4 and IHC/SISH, thereby evaluating the effect of method choice on surrogate subtype assessment and adjuvant treatment decisions. Methods In total, 100 formalin-fixed paraffin-embedded core needle biopsy (CNB) samples and matching surgical specimens for 98 patients with primary invasive BC were evaluated using the STRAT4 assay. The concordance between STRAT4 and IHC was calculated for individual markers for the CNB and surgical specimens. In addition, we investigated whether changes in surrogate BC subtyping based on the STRAT4 results would change adjuvant treatment recommendations. Results The overall percent agreement (OPA) between STRAT4 and IHC/SISH ranged between 76 and 99% for the different biomarkers. Concordance for all four biomarkers in the surgical specimens and CNBs was only 66 and 57%, respectively. In total, 74% of surgical specimens were concordant for subtype, regardless of the method used. IHC- and STRAT4-based subtyping for the surgical specimen were shown to be discordant for 25/98 patients and 18/25 patients would theoretically have been recommended a different adjuvant treatment, primarily receiving more chemotherapy and trastuzumab. Conclusions A comparison of data from IHC/in situ hybridization and STRAT4 demonstrated that subsequent changes in surrogate subtyping for the surgical specimen may theoretically result in more adjuvant treatment given, primarily with chemotherapy and trastuzumab.


2021 ◽  
Vol 7 (2) ◽  
pp. FSO662
Author(s):  
Karen L Reckamp ◽  
Jasmine A McQuerry ◽  
Isa Mambetsariev ◽  
Rebecca Pharaon ◽  
Susan E Yost ◽  
...  

The implication of MET alterations in solid tumors and the immune microenvironment remains elusive. Formalin-fixed, paraffin-embedded samples of 21 patients with solid tumors harboring MET alterations were used for immunohistochemical staining. Extracted RNA was analyzed with the NanoString nCounter human PanCancer immune profiling panel (NanoString Technologies, Inc., WA, USA). Patients were diagnosed with lung (n = 10), breast (n = 5), genitourinary (n = 3) or colorectal cancer (n = 3). Eleven had a MET missense mutation, four had an exon 14 splice site mutation and six had MET amplification. CD6, CCL19, CD40LG, XCR1, MAGEA1, ATM and CCL19 genes were significantly differentially expressed in MET-altered cancers. MET alterations may have a role in various solid tumors as potential therapeutic targets and combination therapy candidates with immune checkpoint inhibitors.


Sign in / Sign up

Export Citation Format

Share Document