scholarly journals A Ferroptosis-Related lncRNAs Signature Predicts Prognosis and Immune Microenvironment for Breast Cancer

2021 ◽  
Vol 8 ◽  
Author(s):  
Kaiming Zhang ◽  
Liqin Ping ◽  
Tian Du ◽  
Gehao Liang ◽  
Yun Huang ◽  
...  

Background: Ferroptosis, a regulated cell death which is driven by the iron-dependent peroxidation of lipids, plays an important role in cancer. However, studies about ferroptosis-related Long non-coding RNAs (lncRNAs) in breast cancer (BC) are limited. Besides, the prognostic role of ferroptosis-related lncRNAs and their relationship to immune microenvironment in breast cancer remain unclear. This study aimed to explore the potential prognostic value of ferroptosis-related lncRNAs and their relationship to immune microenvironment in breast cancer.Methods: RNA-sequencing data of female breast cancer patients were downloaded from TCGA database. 937 patients were randomly separated into training or validation cohort in 2:1 ratio. Ferroptosis-related lncRNAs were screened by Pearson correlation analysis with 239 reported ferroptosis-related genes. A ferroptosis-related lncRNAs signature was constructed with univariate and multivariate Cox regression analyses in the training cohort, and its prognostic value was further tested in the validation cohort.Results: An 8-ferroptosis-related-lncRNAs signature was developed by multivariate Cox regression analysis to divide patients into two risk groups. Patients in the high-risk group had worse prognosis than patients in the low-risk group. Multivariate Cox regression analysis showed the risk score was an independent prognostic indicator. Receiver operating characteristic curve (ROC) analysis proved the predictive accuracy of the signature. The area under time-dependent ROC curve (AUC) reached 0.853 at 1 year, 0.802 at 2 years, 0.740 at 5 years in the training cohort and 0.791 at 1 year, 0.778 at 2 years, 0.722 at 5 years in the validation cohort. Further analysis demonstrated that immune-related pathways were significantly enriched in the high-risk group. Analysis of the immune cell infiltration landscape showed that breast cancer in the high-risk group tended be immunologically “cold”.Conclusion: We identified a novel ferroptosis-related lncRNA signature which could precisely predict the prognosis of breast cancer patients. Ferroptosis-related lncRNAs may have a potential role in the process of anti-tumor immunity and serve as therapeutic targets for breast cancer.

Author(s):  
Peng Gu ◽  
Lei Zhang ◽  
Ruitao Wang ◽  
Wentao Ding ◽  
Wei Wang ◽  
...  

Background: Female breast cancer is currently the most frequently diagnosed cancer in the world. This study aimed to develop and validate a novel hypoxia-related long noncoding RNA (HRL) prognostic model for predicting the overall survival (OS) of patients with breast cancer.Methods: The gene expression profiles were downloaded from The Cancer Genome Atlas (TCGA) database. A total of 200 hypoxia-related mRNAs were obtained from the Molecular Signatures Database. The co-expression analysis between differentially expressed hypoxia-related mRNAs and lncRNAs based on Spearman’s rank correlation was performed to screen out 166 HRLs. Based on univariate Cox regression and least absolute shrinkage and selection operator Cox regression analysis in the training set, we filtered out 12 optimal prognostic hypoxia-related lncRNAs (PHRLs) to develop a prognostic model. Kaplan–Meier survival analysis, receiver operating characteristic curves, area under the curve, and univariate and multivariate Cox regression analyses were used to test the predictive ability of the risk model in the training, testing, and total sets.Results: A 12-HRL prognostic model was developed to predict the survival outcome of patients with breast cancer. Patients in the high-risk group had significantly shorter median OS, DFS (disease-free survival), and predicted lower chemosensitivity (paclitaxel, docetaxel) compared with those in the low-risk group. Also, the risk score based on the expression of the 12 HRLs acted as an independent prognostic factor. The immune cell infiltration analysis revealed that the immune scores of patients in the high-risk group were lower than those of the patients in the low-risk group. RT-qPCR assays were conducted to verify the expression of the 12 PHRLs in breast cancer tissues and cell lines.Conclusion: Our study uncovered dozens of potential prognostic biomarkers and therapeutic targets related to the hypoxia signaling pathway in breast cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tao Han ◽  
Zhifan Zuo ◽  
Meilin Qu ◽  
Yinghui Zhou ◽  
Qing Li ◽  
...  

Background: Although low-grade glioma (LGG) has a good prognosis, it is prone to malignant transformation into high-grade glioma. It has been confirmed that the characteristics of inflammatory factors and immune microenvironment are closely related to the occurrence and development of tumors. It is necessary to clarify the role of inflammatory genes and immune infiltration in LGG.Methods: We downloaded the transcriptome gene expression data and corresponding clinical data of LGG patients from the TCGA and GTEX databases to screen prognosis-related differentially expressed inflammatory genes with the difference analysis and single-factor Cox regression analysis. The prognostic risk model was constructed by LASSO Cox regression analysis, which enables us to compare the overall survival rate of high- and low-risk groups in the model by Kaplan–Meier analysis and subsequently draw the risk curve and survival status diagram. We analyzed the accuracy of the prediction model via ROC curves and performed GSEA enrichment analysis. The ssGSEA algorithm was used to calculate the score of immune cell infiltration and the activity of immune-related pathways. The CellMiner database was used to study drug sensitivity.Results: In this study, 3 genes (CALCRL, MMP14, and SELL) were selected from 9 prognosis-related differential inflammation genes through LASSO Cox regression analysis to construct a prognostic risk model. Further analysis showed that the risk score was negatively correlated with the prognosis, and the ROC curve showed that the accuracy of the model was better. The age, grade, and risk score can be used as independent prognostic factors (p < 0.001). GSEA analysis confirmed that 6 immune-related pathways were enriched in the high-risk group. We found that the degree of infiltration of 12 immune cell subpopulations and the scores of 13 immune functions and pathways in the high-risk group were significantly increased by applying the ssGSEA method (p < 0.05). Finally, we explored the relationship between the genes in the model and the susceptibility of drugs.Conclusion: This study analyzed the correlation between the inflammation-related risk model and the immune microenvironment. It is expected to provide a reference for the screening of LGG prognostic markers and the evaluation of immune response.


2021 ◽  
Author(s):  
Congli Jia ◽  
Fu Yang ◽  
Ruining Li

Abstract Background: Breast cancer (BC) is the most common cancer among women, with high rates of metastasis and recurrence. Some studies have confirmed that pyroptosis is an immune-related programmed cell death. However, the correlation between the expression of pyroptosis-related genes in BC and its prognosis remains unclear. Methods: In this study, we identified 38 pyroptosis-related genes that were differentially expressed between BC and normal tissues. The prognostic value of each pyroptosis-related gene was evaluated using patient data from The Cancer Genome Atlas (TCGA). The Cox regression method was performed to establish a prognostic model for 16-gene signature, classifying all BC patients in the TCGA database into a low-or high-risk group. Results: The survival rate of BC patients in the high-risk group was significantly lower than that in the low-risk group (P<0.01). Prognostic model is independent prognostic factor for BC patients compared to clinical features. Single sample gene set enrichment analysis (ssGSEA) showed a decrease for immune cells and immune function in the high-risk group. Conclusions: Pyroptosis-related genes influence the tumor immune microenvironment and can predict the prognosis of BC.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Moxuan Zhang ◽  
Yanhao Cheng ◽  
Zhengchun Xue ◽  
Qiang Sun ◽  
Jian Zhang

Abstract Background Glioma is the most common primary intracranial tumour and has a very poor prognosis. Pyroptosis, also known as inflammatory necrosis, is a type of programmed cell death that was discovered in recent years. The expression and role of pyroptosis-related genes in gliomas are still unclear. Methods In this study, we analysed the RNA-seq and clinical information of glioma patients from The Cancer Genome Atlas (TCGA) database and Chinese Glioma Genome Atlas (CGGA) database. To investigate the prognosis and immune microenvironment of pyroptosis-related genes in gliomas, we constructed a risk model based on the TCGA cohort. The patients in the CGGA cohort were used as the validation cohort. Results In this study, we identified 34 pyroptosis-related differentially expressed genes (DEGs) in glioma. By clustering these DEGs, all glioma cases can be divided into two clusters. Survival analysis showed that the overall survival time of Cluster 1 was significantly higher than that of Cluster 2. Using the TCGA cohort as the training set, a 10-gene risk model was constructed through univariate Cox regression analysis and LASSO Cox regression analysis. According to the risk score, gliomas were divided into high-risk and low-risk groups. Survival analysis showed that the low-risk group had a longer survival time than the high-risk group. The above results were verified in the CGGA validation cohort. To verify that the risk model was independent of other clinical features, the distribution and the Kaplan-Meier survival curves associated with risk scores were performed. Combined with the characteristics of the clinical cases, the risk score was found to be an independent factor predicting the overall survival of patients with glioma. The analysis of single sample Gene Set Enrichment Analysis (ssGSEA) showed that compared with the low-risk group, the high-risk group had immune cell and immune pathway activities that were significantly upregulated. Conclusion We established 10 pyroptosis-related gene markers that can be used as independent clinical predictors and provide a potential mechanism for the treatment of glioma.


Author(s):  
Menha Swellam ◽  
Hekmat M EL Magdoub ◽  
May A Shawki ◽  
Marwa Adel ◽  
Mona M Hefny ◽  
...  

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e15565-e15565
Author(s):  
Qiqi Zhu ◽  
Du Cai ◽  
Wei Wang ◽  
Min-Er Zhong ◽  
Dejun Fan ◽  
...  

e15565 Background: Few robust predictive biomarkers have been applied in clinical practice due to the heterogeneity of metastatic colorectal cancer (mCRC) . Using the gene pair method, the absolute expression value of genes can be converted into the relative order of genes, which can minimize the influence of the sequencing platform difference and batch effects, and improve the robustness of the model. The main objective of this study was to establish an immune-related gene pairs signature (IRGPs) and evaluate the impact of the IRGPs in predicting the prognosis in mCRC. Methods: A total of 205 mCRC patients containing overall survival (OS) information from the training cohort ( n = 119) and validation cohort ( n = 86) were enrolled in this study. LASSO algorithm was used to select prognosis related gene pairs. Univariate and multivariate analyses were used to validate the prognostic value of the IRGPs. Gene sets enrichment analysis (GSEA) and immune infiltration analysis were used to explore the underlying biological mechanism. Results: An IRGPs signature containing 22 gene pairs was constructed, which could significantly separate patients of the training cohort ( n = 119) and validation cohort ( n = 86) into the low-risk and high-risk group with different outcomes. Multivariate analysis with clinical factors confirmed the independent prognostic value of IRGPs that higher IRGPs was associated with worse prognosis (training cohort: hazard ratio (HR) = 10.54[4.99-22.32], P < 0.001; validation cohort: HR = 3.53[1.24-10.08], P = 0.012). GSEA showed that several metastasis and immune-related pathway including angiogenesis, TGF-β-signaling, epithelial-mesenchymal transition and inflammatory response were enriched in the high-risk group. Through further analysis of the immune factors, we found that the proportions of CD4+ memory T cell, regulatory T cell, and Myeloid dendritic cell were significantly higher in the low-risk group, while the infiltrations of the Macrophage (M0) and Neutrophil were significantly higher in the high-risk group. Conclusions: The IRGPs signature could predict the prognosis of mCRC patients. Further prospective validations are needed to confirm the clinical utility of IRGPs in the treatment decision.


2021 ◽  
Author(s):  
Shaopei Ye ◽  
Wenbin Tang ◽  
Ke Huang

Abstract Background: Autophagy is a biological process to eliminate dysfunctional organelles, aggregates or even long-lived proteins. . Nevertheless, the potential function and prognostic values of autophagy in Wilms Tumor (WT) are complex and remain to be clarifed. Therefore, we proposed to systematically examine the roles of autophagy-associated genes (ARGs) in WT.Methods: Here, we obtained differentially expressed autophagy-related genes (ARGs) between healthy and Wilms tumor from Therapeutically Applicable Research To Generate Effective Treatments(TARGET) and The Cancer Genome Atlas (TCGA) database. The functionalities of the differentially expressed ARGs were analyzed using Gene Ontology. Then univariate COX regression analysis and multivariate COX regression analysis were performed to acquire nine autophagy genes related to WT patients’ survival. According to the risk score, the patients were divided into high-risk and low-risk groups. The Kaplan-Meier curve demonstrated that patients with a high-risk score tend to have a poor prognosis.Results: Eighteen DEARGs were identifed, and nine ARGs were fnally utilized to establish the FAGs based signature in the TCGA cohort. we found that patients in the high-risk group were associated with mutations in TP53. We further conducted CIBERSORT analysis, and found that the infiltration of Macrophage M1 was increased in the high-risk group. Finally, the expression levels of crucial ARGs were verifed by the experiment, which were consistent with our bioinformatics analysis.Conclusions: we emphasized the clinical significance of autophagy in WT, established a prediction system based on autophagy, and identified a promising therapeutic target of autophagy for WT.


2021 ◽  
Author(s):  
juanjuan Qiu ◽  
Li Xu ◽  
Yu Wang ◽  
Jia Zhang ◽  
Jiqiao Yang ◽  
...  

Abstract Background Although the results of gene testing can guide early breast cancer patients with HR+, HER2- to decide whether they need chemotherapy, there are still many patients worldwide whose problems cannot be solved well by genetic testing. Methods 144 735 patients with HR+, HER2-, pT1-3N0-1 breast cancer from the Surveillance, Epidemiology, and End Results database were included from 2010 to 2015. They were divided into chemotherapy (n = 38 392) and no chemotherapy (n = 106 343) group, and after propensity score matching, 23 297 pairs of patients were left. Overall survival (OS) and breast cancer-specific survival (BCSS) were tested by Kaplan–Meier plot and log-rank test and Cox proportional hazards regression model was used to identify independent prognostic factors. A nomogram was constructed and validated by C-index and calibrate curves. Patients were divided into high- or low-risk group according to their nomogram score using X-tile. Results Patients receiving chemotherapy had better OS before and after matching (p < 0.05) but BCSS was not significantly different between patients with and without chemotherapy after matching: hazard ratio (HR) 1.005 (95%CI 0.897, 1.126). Independent prognostic factors were included to construct the nomogram to predict BCSS of patients without chemotherapy. Patients in the high-risk group (score > 238) can get better OS HR 0.583 (0.507, 0.671) and BCSS HR 0.791 (0.663, 0.944) from chemotherapy but the low-risk group (score ≤ 238) cannot. Conclusion The well-validated nomogram and a risk stratification model was built. Patients in the high-risk group should receive chemotherapy while patients in low-risk group may be exempt from chemotherapy.


2021 ◽  
Author(s):  
Menglin He ◽  
Cheng Hu ◽  
Jian Deng ◽  
Hui Ji ◽  
Weiqian Tian

Abstract Background: Breast cancer (BC) is a kind of cancer with high incidence and mortality in female. Conventional clinical characteristics are far from accurate to predict individual outcomes. Therefore, we aimed to develop a novel signature to predict the survival of patients with BC. Methods: We analyzed the data of a training cohort from the TCGA database and a validation cohort from GEO database. After the applications of GSEA and Cox regression analyses, a glycolysis-related signature for predicting the survival of patients with BC was developed. The signature contains AK3, CACNA1H, IL13RA1, NUP43, PGK1, and SDC1. Then, we constructed a risk score formula to classify the patients into high and low-risk groups based on the expression levels of six-gene in patients. The receiver operating characteristic (ROC) curve and the Kaplan-Meier curve were used to assess the predicted capacity of the model. Next, a nomogram was developed to predict the outcomes of patients with risk score and clinical features in 1, 3, and 5 years. We further used Human Protein Atlas (HPA) database to validate the expressions of the six biomarkers in tumor and sample tissues.Results: We constructed a six-gene signature to predict the outcomes of patients with BC. The patients in high-risk group showed poor prognosis than that in low-risk group. The AUC values were 0.719 and 0.702, showing that the prediction performance of the signature is acceptable. Additionally, Cox regression analysis revealed that these biomarkers could independently predict the prognosis of BC patients without being affected by clinical factors. The expression levels of all six biomarkers in BC tissues were higher than that in normal tissues except AK3. Conclusion: We developed a six-gene signature to predict the prognosis of patients with BC. Our signature has been proved to have the ability to make an accurate and obvious prediction and might be used to expand the prediction methods in clinical.


2020 ◽  
Author(s):  
Li Liu ◽  
She Tian ◽  
Zhu Li ◽  
Yongjun Gong ◽  
Hao Zhang

Abstract Background : Hepatocellular carcinoma (HCC) is one of the most common clinical malignant tumors, resulting in high mortality and poor prognosis. Studies have found that LncRNA plays an important role in the onset, metastasis and recurrence of hepatocellular carcinoma. The immune system plays a vital role in the development, progression, metastasis and recurrence of cancer. Therefore, immune-related lncRNA can be used as a novel biomarker to predict the prognosis of hepatocellular carcinoma. Methods : The transcriptome data and clinical data of HCC patients were obtained by using The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA‑LIHC), and immune-related genes were extracted from the Molecular Signatures Database (IMMUNE RESPONSE M19817 and IMMUNE SYSTEM PROCESS M13664). By constructing the co-expression network and Cox regression analysis, 13 immune-lncRNAs was identified to predict the prognosis of HCC patients. Patients were divided into high risk group and low risk group by using the risk score formula, and the difference in overall survival (OS) between the two groups was reflected by Kaplan-Meier survival curve. The time - dependent receiver operating characteristics (ROC) analysis and principal component analysis (PCA) were used to evaluate 13 immune -lncRNAs signature. Results : Through TCGA - LIHC extracted from 343 cases of patients with hepatocellular carcinoma RNA - Seq data and clinical data, 331 immune-related genes were extracted from the Molecular Signatures Database , co-expression networks and Cox regression analysis were constructed, 13 immune-lncRNAs signature was identified as biomarkers to predict the prognosis of patients. At the same time using the risk score median divided the patients into high risk and low risk groups, and through the Kaplan-Meier survival curve analysis found that high-risk group of patients' overall survival (OS) less low risk group of patients. The AUC value of the ROC curve is 0.828, and principal component analysis (PCA) results showed that patients could be clearly divided into two parts by immune-lncRNAs, which provided evidence for the use of 13 immune-lncRNAs signature as prognostic markers. Conclusion : Our study identified 13 immune-lncRNAs signature that can effectively predict the prognosis of HCC patients, which may be a new prognostic indicator for predicting clinical outcomes.


Sign in / Sign up

Export Citation Format

Share Document