scholarly journals Identification of Clinical and Tumor Microenvironment Characteristics of Hypoxia-Related Risk Signature in Lung Adenocarcinoma

2021 ◽  
Vol 8 ◽  
Author(s):  
Zili Dai ◽  
Taisheng Liu ◽  
Guihong Liu ◽  
Zhen Deng ◽  
Peng Yu ◽  
...  

Background: Lung cancer is the leading cause of cancer-related death globally. Hypoxia can suppress the activation of the tumor microenvironment (TME), which contributes to distant metastasis. However, the role of hypoxia-mediated TME in predicting the diagnosis and prognosis of lung adenocarcinoma (LUAD) patients remains unclear.Methods: Both RNA and clinical data from the LUAD cohort were downloaded from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Both univariate and multivariate Cox regression analyses were used to further screen prognosis-related hypoxia gene clusters. Time-dependent receiver operation characteristic (ROC) curves were established to evaluate the predictive sensitivity and specificity of the hypoxia-related risk signature. The characterization of gene set enrichment analysis (GSEA) and TME immune cell infiltration were further explored to identify hypoxia-related immune infiltration.Results: Eight hypoxia-related genes (LDHA, DCN, PGK1, PFKP, FBP1, LOX, ENO3, and CXCR4) were identified and established to construct a hypoxia-related risk signature. The high-risk group showed a poor overall survival compared to that of the low-risk group in the TCGA and GSE68465 cohorts (p < 0.0001). The AUCs for 1-, 3-, and 5-year overall survival were 0.736 vs. 0.741, 0.656 vs. 0.737, and 0.628 vs. 0.649, respectively. The high-risk group was associated with immunosuppression in the TME.Conclusion: The hypoxia-related risk signature may represent an independent biomarker that can differentiate the characteristics of TME immune cell infiltration and predict the prognosis of LUAD.

Author(s):  
Chufeng Gu ◽  
Xin Gu ◽  
Yujie Wang ◽  
Zhixian Yao ◽  
Chuandi Zhou

ObjectivesUveal melanoma (UM) is the most common primary intraocular malignancy in adults, and immune infiltration plays a crucial role in the prognosis of UM. This study aimed to generate an immunological marker-based predictive signature for the overall survival (OS) of UM patients.MethodsSingle-sample gene-set enrichment analysis (ssGSEA) was used to profile immune cell infiltration in 79 patients with UM from The Cancer Genome Atlas (TCGA) database. Univariate and multivariate least absolute shrinkage and selection operator (LASSO) Cox regressions were used to determine the prognostic factors for UM and construct the predictive immunosignature. Receiver operating characteristic (ROC) curves, decision curve analysis (DCA), and calibration curves were performed to evaluate the clinical ability and accuracy of the model. In addition, the predictive accuracy was compared between the immunosignature and the Tumor, Node, Metastasis (TNM) staging system of American Joint Committee on Cancer (AJCC). We further analyzed the differences in clinical characteristics, immune infiltrates, immune checkpoints, and therapy sensitivity between high- and low-risk groups characterized by the prognostic model.ResultsHigher levels of immune cell infiltration in UM were related to a lower survival rate. Matrix metallopeptidase 12 (MMP12), TCDD inducible poly (ADP-ribose) polymerase (TIPARP), and leucine rich repeat neuronal 3 (LRRN3) were identified as prognostic signatures, and an immunological marker-based prognostic signature was constructed with good clinical ability and accuracy. The immunosignature was developed with a concordance index (C-index) of 0.881, which is significantly better than that of the TNM staging system (p < 0.001). We further identified 1,762 genes with upregulated expression and 798 genes with downregulated expression in the high-risk group, and the differences between the high- and low-risk groups were mainly in immune-related processes. In addition, the expression of most of the immune checkpoint-relevant and immune activity-relevant genes was significantly higher in the high-risk group, which was more sensitive to therapy.ConclusionWe developed a novel immunosignature constructed by MMP12, TIPARP, and LRRN3 that could effectively predict the OS of UM.


Author(s):  
Liuxing Wu ◽  
Xin Hu ◽  
Hongji Dai ◽  
Kexin Chen ◽  
Ben Liu

Despite robust evidence for the role of m6A in cancer development and progression, its association with immune infiltration and survival outcomes in melanoma remains obscure. Here, we aimed to develop an m6A-related risk signature to improve prognostic and immunotherapy responder prediction performance in the context of melanoma. We comprehensively analyzed the m6A cluster and immune infiltration phenotypes of public datasets. The TCGA (n = 457) and eleven independent melanoma cohorts (n = 758) were used as the training and validation datasets, respectively. We identified two m6A clusters (m6A-clusterA and m6A-clusterB) based on the expression pattern of m6A regulators via unsupervised consensus clustering. IGF2BP1 (7.49%), KIAA1429 (7.06%), and YTHDC1 (4.28%) were the three most frequently mutated genes. There was a correlation between driver genes mutation statuses and the expression of m6A regulators. A significant difference in tumor-associated immune infiltration between two m6A clusters was detected. Compared with m6A-clusterA, the m6A-clusterB was characterized by a lower immune score and immune cell infiltration but higher mRNA expression-based stemness index (mRNAsi). An m6A-related risk signature consisting of 12 genes was determined via Cox regression analysis and divided the patients into low- and high-risk groups (IL6ST, MBNL1, NXT2, EIF2A, CSGALNACT1, C11orf58, CD14, SPI1, NCCRP1, BOK, CD74, PAEP). A nomogram was developed for the prediction of the survival rate. Compared with the high-risk group, the low-risk group was characterized by high expression of immune checkpoints and immunophenoscore (IPS), activation of immune-related pathways, and more enriched in immune cell infiltrations. The low-risk group had a favorable prognosis and contained the potential beneficiaries of the immune checkpoint blockade therapy and verified by the IMvigor210 cohort (n = 298). The m6A-related signature we have determined in melanoma highlights the relationships between m6A regulators and immune cell infiltration. The established risk signature was identified as a promising clinical biomarker of melanoma.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11911
Author(s):  
Lei Liu ◽  
Huayu He ◽  
Yue Peng ◽  
Zhenlin Yang ◽  
Shugeng Gao

Background The prognosis of patients for lung adenocarcinoma (LUAD) is known to vary widely; the 5-year overall survival rate is just 63% even for the pathological IA stage. Thus, in order to identify high-risk patients and facilitate clinical decision making, it is vital that we identify new prognostic markers that can be used alongside TNM staging to facilitate risk stratification. Methods We used mRNA expression from The Cancer Genome Atlas (TCGA) cohort to identify a prognostic gene signature and combined this with clinical data to develop a predictive model for the prognosis of patients for lung adenocarcinoma. Kaplan-Meier curves, Lasso regression, and Cox regression, were used to identify specific prognostic genes. The model was assessed via the area under the receiver operating characteristic curve (AUC-ROC) and validated in an independent dataset (GSE50081) from the Gene Expression Omnibus (GEO). Results Our analyses identified a four-gene prognostic signature (CENPH, MYLIP, PITX3, and TRAF3IP3) that was associated with the overall survival of patients with T1-4N0-2M0 in the TCGA dataset. Multivariate regression suggested that the total risk score for the four genes represented an independent prognostic factor for the TCGA and GEO cohorts; the hazard ratio (HR) (high risk group vs low risk group) were 2.34 (p < 0.001) and 2.10 (p = 0.017). Immune infiltration estimations, as determined by an online tool (TIMER2.0) showed that CD4+ T cells were in relative abundance in the high risk group compared to the low risk group in both of the two cohorts (both p < 0.001). We established a composite prognostic model for predicting OS, combined with risk-grouping and clinical factors. The AUCs for 1-, 3-, 5- year OS in the training set were 0.750, 0.737, and 0.719; and were 0.645, 0.766, and 0.725 in the validation set. The calibration curves showed a good match between the predicted probabilities and the actual probabilities. Conclusions We identified a four-gene predictive signature which represents an independent prognostic factor and can be used to identify high-risk patients from different TNM stages of LUAD. A new prognostic model that combines a prognostic gene signature with clinical features exhibited better discriminatory ability for OS than traditional TNM staging.


2021 ◽  
Author(s):  
Chen-jie Qiu ◽  
Xue-bing Wang ◽  
Zi-ruo Zheng ◽  
Chao-zhi Yang ◽  
Kai Lin ◽  
...  

Abstract Background: The purpose of this study was to identify ferroptosis-related genes (FRGs) associated with the prognosis of pancreatic cancer and to construct a prognostic model based on FRGs. Methods: Based on pancreatic cancer data obtained from The Cancer Genome Atlas database, we established the prognostic model from 232 FRGs. A nomogram was constructed by combining the prognostic model and clinicopathological features. Gene Expression Omnibus datasets and tissue samples obtained from our center were utilized to validate the model. Relationship between risk score and immune cell infiltration was explored by CIBERSORT and TIMER.Results: The prognostic model was established based on four FRGs (ENPP2, ATG4D, SLC2A1 and MAP3K5) and can be an independent risk factor in pancreatic cancer (HR 1.648, 95% CI 1.335-2.035, p < 0.001). Based on the median risk score, patients were divided into a high-risk group and a low-risk group. The prognosis of the low-risk group was significantly better than that of the high-risk group. In the high-risk group, patients treated with chemotherapy had a better prognosis. The nomogram showed that the model was the most important element. Gene set enrichment analysis identified three key pathways, namely, TGFβ signaling, HIF signaling pathway and adherens junction. The prognostic model can also affect the immune cell infiltration, such as macrophages M0, M1, CD4+T cell and CD8+T cell. Conclusion: A ferroptosis-related prognostic model can be employed to predict the prognosis of pancreatic cancer. Ferroptosis can be an important marker and immunotherapy can be a potential therapeutic target for pancreatic cancer.


2021 ◽  
Author(s):  
Chen-jie Qiu ◽  
Xue-bing Wang ◽  
Zi-ruo Zheng ◽  
Chao-zhi Yang ◽  
Kai Lin ◽  
...  

Abstract Background: With the development of genomics, ferroptosis has been determined to be highly important in cancer. The purpose of this study was to identify ferroptosis-related genes (FRGs) associated with the prognosis of pancreatic cancer and to construct a prognostic model based on FRGs. Methods: Based on pancreatic cancer data obtained from The Cancer Genome Atlas (TCGA) database, we employed univariate Cox analysis, least absolute shrinkage and selection operator (LASSO) analysis and multivariate Cox analysis to establish the prognostic model from 232 FRGs. A nomogram was constructed by combining the prognostic model and clinicopathological features. Gene Expression Omnibus (GEO) datasets and tissue samples obtained from our center were utilized to validate the prognostic model. Relationship between risk score and immune cell infiltration was explored by CIBERSORT and TIMER.Results: The prognostic model was established based on four FRGs (ENPP2, ATG4D, SLC2A1 and MAP3K5) and can be an independent risk factor in pancreatic cancer (HR 1.648, 95% CI 1.335-2.035, p < 0.001). Based on the median risk score, patients were divided into a high-risk group and a low-risk group. The KM curve indicated that the overall survival (OS) of the low-risk group was significantly better than that of the high-risk group. The nomogram showed that the prognostic model was the most important element. Gene set enrichment analysis (GSEA) identified three key pathways, namely, TGFβ signaling, HIF signaling pathway and adherens junction. GSE57495, GSE62452 and 88 pancreatic cancer tissues from our center were utilized to validate the prognostic model. The prognostic model can also affect the immune cell infiltration, such as macrophages M0, M1, CD4+T cell and CD8+T cell. Conclusion: A ferroptosis-related prognostic model can be employed to predict the prognosis of pancreatic cancer. Ferroptosis can be an important marker and immunotherapy can be a potential therapeutic target for pancreatic cancer.


2021 ◽  
Author(s):  
BO SONG ◽  
Lijun Tian ◽  
Fan Zhang ◽  
Zheyu Lin ◽  
Boshen Gong ◽  
...  

Abstract Background: Thyroid cancer (TC) is the most common endocrine malignancy worldwide. The incidence of TC is high and increasing worldwide due to continuous improvements in diagnostic technology. TC is still often overtreated due to a lack of reliable diagnostic biomarkers. Therefore, determining accurate prognostic predictions to stratify TC patients is important.Methods: Raw data were downloaded from the TCGA database, and pairwise comparisons were applied to identify differentially expressed immune-related lncRNA (DEirlncRNA) pairs. Then, we used univariate Cox regression analysis and a modified Lasso algorithm on these pairs to construct a risk assessment model for TC. Next, TC patients were assigned to high- and low-risk groups based on the optimal cutoff score of the model for the 1-year ROC curve. We evaluated the signature in terms of prognostic independence, predictive value, immune cell infiltration, ICI-related molecules and small-molecule inhibitor efficacy. Results: We identified 30 DEirlncRNA pairs through Lasso regression, and 14 pairs served as the novel predictive signature. The high-risk group had a significantly poorer prognosis than the low-risk group. Cox regression analysis revealed that this immune-related signature can predict prognosis independently and reliably for TC. With the CIBERSORT algorithm, we found an association between the signature and immune cell infiltration. Additionally, several immune checkpoint inhibitor (ICI)-related molecules, such as PD-1 and PD-L1, showed a negative correlation with the high-risk group. We further found that some commonly used small-molecule inhibitors, such as sunitinib, were related to this new signature. Conclusions: We constructed a prognostic immune-related lncRNA signature that can predict TC patient survival without considering the technical bias of different platforms, and this signature also sheds light on TC overall prognosis and novel clinical treatments, such as ICB therapy and small molecular inhibitors.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jinzhi Lai ◽  
Hainan Yang ◽  
Tianwen Xu

Abstract Background Malignant mesothelioma (MM) is a relatively rare and highly lethal tumor with few treatment options. Thus, it is important to identify prognostic markers that can help clinicians diagnose mesothelioma earlier and assess disease activity more accurately. Alternative splicing (AS) events have been recognized as critical signatures for tumor diagnosis and treatment in multiple cancers, including MM. Methods We systematically examined the AS events and clinical information of 83 MM samples from TCGA database. Univariate Cox regression analysis was used to identify AS events associated with overall survival. LASSO analyses followed by multivariate Cox regression analyses were conducted to construct the prognostic signatures and assess the accuracy of these prognostic signatures by receiver operating characteristic (ROC) curve and Kaplan–Meier survival analyses. The ImmuCellAI and ssGSEA algorithms were used to assess the degrees of immune cell infiltration in MM samples. The survival-related splicing regulatory network was established based on the correlation between survival-related AS events and splicing factors (SFs). Results A total of 3976 AS events associated with overall survival were identified by univariate Cox regression analysis, and ES events accounted for the greatest proportion. We constructed prognostic signatures based on survival-related AS events. The prognostic signatures proved to be an efficient predictor with an area under the curve (AUC) greater than 0.9. Additionally, the risk score based on 6 key AS events proved to be an independent prognostic factor, and a nomogram composed of 6 key AS events was established. We found that the risk score was significantly decreased in patients with the epithelioid subtype. In addition, unsupervised clustering clearly showed that the risk score was associated with immune cell infiltration. The abundances of cytotoxic T (Tc) cells, natural killer (NK) cells and T-helper 17 (Th17) cells were higher in the high-risk group, whereas the abundances of induced regulatory T (iTreg) cells were lower in the high-risk group. Finally, we identified 3 SFs (HSPB1, INTS1 and LUC7L2) that were significantly associated with MM patient survival and then constructed a regulatory network between the 3 SFs and survival-related AS to reveal potential regulatory mechanisms in MM. Conclusion Our study provided a prognostic signature based on 6 key events, representing a better effective tumor-specific diagnostic and prognostic marker than the TNM staging system. AS events that are correlated with the immune system may be potential therapeutic targets for MM.


2021 ◽  
Vol 10 ◽  
Author(s):  
Jian-Zhao Xu ◽  
Chen Gong ◽  
Zheng-Fu Xie ◽  
Hua Zhao

Lung adenocarcinoma (LUAD) needs to be stratified for its heterogeneity. Oncogenic driver alterations such as EGFR mutation, ALK translocation, ROS1 translocation, and BRAF mutation predict response to treatment for LUAD. Since oncogenic driver alterations may modulate immune response in tumor microenvironment that may influence prognosis in LUAD, the effects of EGFR, ALK, ROS1, and BRAF alterations on tumor microenvironment remain unclear. Immune-related prognostic model associated with oncogenic driver alterations is needed. In this study, we performed the Cox-proportional Hazards Analysis based on the L1-penalized (LASSO) Analysis to establish an immune-related prognostic model (IPM) in stage I-II LUAD patients, which was based on 3 immune-related genes (PDE4B, RIPK2, and IFITM1) significantly enriched in patients without EGFR, ALK, ROS1, and BRAF alterations in The Cancer Genome Atlas (TCGA) database. Then, patients were categorized into high-risk and low-risk groups individually according to the IPM defined risk score. The predicting ability of the IPM was validated in GSE31210 and GSE26939 downloaded from the Gene Expression Omnibus (GEO) database. High-risk was significantly associated with lower overall survival (OS) rates in 3 independent stage I-II LUAD cohorts (all P &lt; 0.05). Moreover, the IPM defined risk independently predicted OS for patients in TCGA stage I-II LUAD cohort (P = 0.011). High-risk group had significantly higher proportions of macrophages M1 and activated mast cells but lower proportions of memory B cells, resting CD4 memory T cells and resting mast cells than low-risk group (all P &lt; 0.05). In addition, the high-risk group had a significantly lower expression of CTLA-4, PDCD1, HAVCR2, and TIGIT than the low-risk group (all P &lt; 0.05). In summary, we established a novel IPM that could provide new biomarkers for risk stratification of stage I-II LUAD patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Minggao Zhu ◽  
Yachao Cui ◽  
Qi Mo ◽  
Junwei Zhang ◽  
Ting Zhao ◽  
...  

N6-methyladenosine (m6A) RNA modification is a reversible mechanism that regulates eukaryotic gene expression. Growing evidence has demonstrated an association between m6A modification and tumorigenesis and response to immunotherapy. However, the overall influence of m6A regulators on the tumor microenvironment and their effect on the response to immunotherapy in lung adenocarcinoma remains to be explored. Here, we comprehensively analyzed the m6A modification patterns of 936 lung adenocarcinoma samples based on 24 m6A regulators. First, we described the features of genetic variation in these m6A regulators. Many m6A regulators were aberrantly expressed in tumors and negatively correlated with most tumor-infiltrating immune cell types. Furthermore, we identified three m6A modification patterns using a consensus clustering method. m6A cluster B was preferentially associated with a favorable prognosis and enriched in metabolism-associated pathways. In contrast, m6A cluster A was associated with the worst prognosis and was enriched in the process of DNA repair. m6A cluster C was characterized by activation of the immune system and a higher stromal cell score. Surprisingly, patients who received radiotherapy had a better prognosis than patients without radiotherapy only in the m6A cluster C group. Subsequently, we constructed an m6A score model that qualified the m6A modification level of individual samples by using principal component analysis algorithms. Patients with high m6A score were characterized by enhanced immune cell infiltration and prolonged survival time and were associated with lower tumor mutation burden and PD-1/CTLA4 expression. The combination of the m6A score and tumor mutation burden could accurately predict the prognosis of patients with lung adenocarcinoma. Furthermore, patients with high m6A score exhibited greater prognostic benefits from radiotherapy and immunotherapy. This study demonstrates that m6A modification is significantly associated with tumor microenvironment diversity and prognosis. A comprehensive evaluation of m6A modification patterns in single tumors will expand our understanding of the tumor immune landscape. In addition, our m6A score model demonstrated that the level of immune cell infiltration plays a significant role in cancer immunotherapy and provides a basis to increase the efficiency of current immune therapies and promote the clinical success of immunotherapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Luping Zhang ◽  
Shaokun Wang ◽  
Yachen Wang ◽  
Weidan Zhao ◽  
Yingli Zhang ◽  
...  

BackgroundImbalanced nutritional supply and demand in the tumor microenvironment often leads to hypoxia. The subtle interaction between hypoxia and immune cell behavior plays an important role in tumor occurrence and development. However, the functional relationship between hypoxia and the tumor microenvironment remains unclear. Therefore, we aimed to investigate the effect of hypoxia on the intestinal tumor microenvironment.MethodWe extracted the names of hypoxia-related genes from the Gene Set Enrichment Analysis (GSEA) database and screened them for those associated with colorectal cancer prognosis, with the final list including ALDOB, GPC1, ALDOC, and SLC2A3. Using the sum of the expression levels of these four genes, provided by The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and the expression coefficients, we developed a hypoxia risk score model. Using the median risk score value, we divided the patients in the two databases into high- and low-risk groups. GSEA was used to compare the enrichment differences between the two groups. We used the CIBERSORT computational method to analyze immune cell infiltration. Finally, the correlation between these five genes and hypoxia was analyzed.ResultThe prognosis of the two groups differed significantly, with a higher survival rate in the low-risk group than in the high-risk group. We found that the different risk groups were enriched by immune-related and inflammatory pathways. We identified activated M0 macrophages in TCGA and GEO databases and found that CCL2/4/5, and CSF1 contributed toward the increased infiltration rate of this immune cell type. Finally, we observed a positive correlation between the five candidate genes’ expression and the risk of hypoxia, with significant differences in the level of expression of each of these genes between patient risk groups.ConclusionOverall, our data suggest that hypoxia is associated with the prognosis and rate of immune cell infiltration in patients with colorectal cancer. This finding may improve immunotherapy for colorectal cancer.


Sign in / Sign up

Export Citation Format

Share Document