scholarly journals Effects of Hypoxia in Intestinal Tumors on Immune Cell Behavior in the Tumor Microenvironment

2021 ◽  
Vol 12 ◽  
Author(s):  
Luping Zhang ◽  
Shaokun Wang ◽  
Yachen Wang ◽  
Weidan Zhao ◽  
Yingli Zhang ◽  
...  

BackgroundImbalanced nutritional supply and demand in the tumor microenvironment often leads to hypoxia. The subtle interaction between hypoxia and immune cell behavior plays an important role in tumor occurrence and development. However, the functional relationship between hypoxia and the tumor microenvironment remains unclear. Therefore, we aimed to investigate the effect of hypoxia on the intestinal tumor microenvironment.MethodWe extracted the names of hypoxia-related genes from the Gene Set Enrichment Analysis (GSEA) database and screened them for those associated with colorectal cancer prognosis, with the final list including ALDOB, GPC1, ALDOC, and SLC2A3. Using the sum of the expression levels of these four genes, provided by The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and the expression coefficients, we developed a hypoxia risk score model. Using the median risk score value, we divided the patients in the two databases into high- and low-risk groups. GSEA was used to compare the enrichment differences between the two groups. We used the CIBERSORT computational method to analyze immune cell infiltration. Finally, the correlation between these five genes and hypoxia was analyzed.ResultThe prognosis of the two groups differed significantly, with a higher survival rate in the low-risk group than in the high-risk group. We found that the different risk groups were enriched by immune-related and inflammatory pathways. We identified activated M0 macrophages in TCGA and GEO databases and found that CCL2/4/5, and CSF1 contributed toward the increased infiltration rate of this immune cell type. Finally, we observed a positive correlation between the five candidate genes’ expression and the risk of hypoxia, with significant differences in the level of expression of each of these genes between patient risk groups.ConclusionOverall, our data suggest that hypoxia is associated with the prognosis and rate of immune cell infiltration in patients with colorectal cancer. This finding may improve immunotherapy for colorectal cancer.

2020 ◽  
Author(s):  
Luping Zhang ◽  
Shaokun Wang ◽  
Yachen Wang ◽  
Weidan Zhao ◽  
Yingli Zhang ◽  
...  

Abstract Background: Imbalanced nutritional supply and demand in the tumor microenvironment often leads to hypoxia. The subtle interaction between hypoxia and immune cell behavior plays an important role in tumor occurrence and development. However, the functional relationship between hypoxia and the tumor microenvironment remains unclear. Therefore, we aimed to investigate the effect of hypoxia on the intestinal tumor microenvironment.Method: We extracted the names of hypoxia-related genes from the Gene Set Enrichment Analysis (GSEA) database and screened them for those associated with the prognosis of colorectal cancer, with the final list including ALDOB, GPC1, ALDOC, and SLC2A3. Using the sum of the expression levels of these four genes, provided by The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and the expression coefficients, we developed a hypoxia risk score model. Using the median risk score value, we divided the patients in the two databases into high- and low-risk groups.GSEA was used to compare the enrichment differences between the two groups.We used the CIBERSORT computational method to analyze immune cell infiltration.Finally,the correlation between these five genes and hypoxia was analyzed. Result: The prognosis of the two groups differed significantly, with a higher survival rate in the low-risk group than in the high-risk group.We found that the different risk groups were enriched by immune-related and inflammatory pathways. We identified activated CD4 memory T cells and M0 macrophages in TCGA and GEO databases and found that CCL2/4/5, CSF1, and CX3CL1 contributed toward the increased infiltration rate of these immune cell types. Finally, we observed a positive correlation between the five candidate genes’ expression and the risk of hypoxia, with significant differences in the level of expression of each of these genes between patient risk groups.Conclusion: Overall, our data suggest that hypoxia is associated with the prognosis and rate of immune system infiltration in patients with colorectal cancer. This finding may improve immunotherapy for colorectal cancer.


2020 ◽  
Author(s):  
Jianfeng Zheng ◽  
Jinyi Tong ◽  
Benben Cao ◽  
Xia Zhang ◽  
Zheng Niu

Abstract Background: Cervical cancer (CC) is a common gynecological malignancy for which prognostic and therapeutic biomarkers are urgently needed. The signature based on immune‐related lncRNAs(IRLs) of CC has never been reported. This study aimed to establish an IRL signature for patients with CC.Methods: The RNA-seq dataset was obtained from the TCGA, GEO, and GTEx database. The immune scores(IS)based on single-sample gene set enrichment analysis (ssGSEA) were calculated to identify the IRLs, which were then analyzed using univariate Cox regression analysis to identify significant prognostic IRLs. A risk score model was established to divide patients into low-risk and high-risk groups based on the median risk score of these IRLs. This was then validated by splitting TCGA dataset(n=304) into a training-set(n=152) and a valid-set(n=152). The fraction of 22 immune cell subpopulations was evaluated in each sample to identify the differences between low-risk and high-risk groups. Additionally, a ceRNA network associated with the IRLs was constructed.Results: A cohort of 326 CC and 21 normal tissue samples with corresponding clinical information was included in this study. Twenty-eight IRLs were collected according to the Pearson’s correlation analysis between immune score and lncRNA expression (P < 0.01). Four IRLs (BZRAP1-AS1, EMX2OS, ZNF667-AS1, and CTC-429P9.1) with the most significant prognostic values (P < 0.05) were identified which demonstrated an ability to stratify patients into low-risk and high-risk groups by developing a risk score model. It was observed that patients in the low‐risk group showed longer overall survival (OS) than those in the high‐risk group in the training-set, valid-set, and total-set. The area under the curve (AUC) of the receiver operating characteristic curve (ROC curve) for the four IRLs signature in predicting the one-, two-, and three-year survival rates were larger than 0.65. In addition, the low-risk and high-risk groups displayed different immune statuses in GSEA. These IRLs were also significantly correlated with immune cell infiltration. Conclusions: Our results showed that the IRL signature had a prognostic value for CC. Meanwhile, the specific mechanisms of the four-IRLs in the development of CC were ascertained preliminarily.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mingqin Ge ◽  
Jie Niu ◽  
Ping Hu ◽  
Aihua Tong ◽  
Yan Dai ◽  
...  

Objective: This study aimed to construct a prognostic ferroptosis-related signature for thyroid cancer and probe into the association with tumor immune microenvironment.Methods: Based on the expression profiles of ferroptosis-related genes, a LASSO cox regression model was established for thyroid cancer. Kaplan-Meier survival analysis was presented between high and low risk groups. The predictive performance was assessed by ROC. The predictive independency was validated via multivariate cox regression analysis and stratified analysis. A nomogram was established and verified by calibration curves. The enriched signaling pathways were predicted via GSEA. The association between the signature and immune cell infiltration was analyzed by CIBERSORT. The ferroptosis-related genes were validated in thyroid cancer tissues by immunohistochemistry and RT-qPCR.Results: A ferroptosis-related eight gene model was established for predicting the prognosis of thyroid cancer. Patients with high risk score indicated a poorer prognosis than those with low risk score (p = 1.186e-03). The AUCs for 1-, 2-, and 3-year survival were 0.887, 0.890, and 0.840, respectively. Following adjusting other prognostic factors, the model could independently predict the prognosis (p = 0.015, HR: 1.870, 95%CI: 1.132–3.090). A nomogram combining the signature and age was constructed. The nomogram-predicted probability of 1-, 3-, and 5-year survival approached the actual survival time. Several ferroptosis-related pathways were enriched in the high-risk group. The signature was distinctly associated with the immune cell infiltration. After validation, the eight genes were abnormally expressed between thyroid cancer and control tissues.Conclusion: Our findings established a prognostic ferroptosis-related signature that was associated with the immune microenvironment for thyroid cancer.


2021 ◽  
Author(s):  
Chen-jie Qiu ◽  
Xue-bing Wang ◽  
Zi-ruo Zheng ◽  
Chao-zhi Yang ◽  
Kai Lin ◽  
...  

Abstract Background: The purpose of this study was to identify ferroptosis-related genes (FRGs) associated with the prognosis of pancreatic cancer and to construct a prognostic model based on FRGs. Methods: Based on pancreatic cancer data obtained from The Cancer Genome Atlas database, we established the prognostic model from 232 FRGs. A nomogram was constructed by combining the prognostic model and clinicopathological features. Gene Expression Omnibus datasets and tissue samples obtained from our center were utilized to validate the model. Relationship between risk score and immune cell infiltration was explored by CIBERSORT and TIMER.Results: The prognostic model was established based on four FRGs (ENPP2, ATG4D, SLC2A1 and MAP3K5) and can be an independent risk factor in pancreatic cancer (HR 1.648, 95% CI 1.335-2.035, p < 0.001). Based on the median risk score, patients were divided into a high-risk group and a low-risk group. The prognosis of the low-risk group was significantly better than that of the high-risk group. In the high-risk group, patients treated with chemotherapy had a better prognosis. The nomogram showed that the model was the most important element. Gene set enrichment analysis identified three key pathways, namely, TGFβ signaling, HIF signaling pathway and adherens junction. The prognostic model can also affect the immune cell infiltration, such as macrophages M0, M1, CD4+T cell and CD8+T cell. Conclusion: A ferroptosis-related prognostic model can be employed to predict the prognosis of pancreatic cancer. Ferroptosis can be an important marker and immunotherapy can be a potential therapeutic target for pancreatic cancer.


2022 ◽  
Author(s):  
Qiaonan Guo ◽  
Pengjun Qiu ◽  
Kelun Pan ◽  
Jianpeng Chen ◽  
Jianqing Lin

Abstract Background: Exosomes are nanosized vesicles, play a vital role in breast cancer (BC) occurrence, development, invasion, metastasis, and drug resistance. Nevertheless, studies about exosome-related genes in breast cancer are limited. Besides, the interaction between the exosomes and tumor immune microenvironment (TIME) in BC are still unclear. Hence, we procced to study the potential prognostic value of exosome-related genes and their relationship to immune microenvironment in BC. Methods: 121 exosome-related genes were provided by ExoBCD database and 7 final genes were selected from the intersection of 33 differential expression genes (DEGs) and 19 prognostic genes in BC. Based on the expression levels of the 7 genes, downloaded from The Cancer Genome Atlas (TCGA) database, as well as the regression coefficients, the exosome-related signature was constructed. As a result, the patients in TCGA and GEO database were separated into low- and high- risk groups, respectively. Subsequently, R clusterProfiler package was applied to identify the distinct enrichment pathways between high-risk group and low-risk group. The ESTIMATE method was used to calculate ESTIMATE Score and CIBERSORT was applied to evaluate the immune cell infiltration. Eventually, the different expression levels of immune checkpoint related genes were analyzed between the two risk groups. Results: Results of BC prognosis vary from different risk groups. The low-risk groups were identified with higher survival rate both in TCGA and GEO cohort. The DEGs between high- and low- risk groups were found to enrich in immunity, biological processes, and inflammation pathways. The BC patients with higher ESTIMATE scores were revealed to have better overall survival (OS). Subsequently, CD8+ T cells, naive B cells, CD4+ resting memory T cells, monocytes, and neutrophils were upregulated, while M0 macrophages and M2 macrophages were downregulated in the low-risk group. At last, 4 genes reported as the targets of immune checkpoint inhibitors were further analyzed. The low-risk groups in TCGA and GEO cohorts were indicated with higher expression levels of LAG-3, CD274, TIGIT and CTLA-4. Conclusion: According to this study, exosomes are closely associated with the prognosis and immune cell infiltration of BC patients. These findings may make contributions to improve immunotherapy and bring a new sight for BC treatment strategies.


2021 ◽  
Vol 18 (5) ◽  
pp. 6709-6723
Author(s):  
Xin Yu ◽  
◽  
Jun Liu ◽  
Ruiwen Xie ◽  
Mengling Chang ◽  
...  

<abstract> <sec><title>Objective</title><p>We aimed to construct a novel prognostic model based on N6-methyladenosine (m6A)-related autophagy genes for predicting the prognosis of lung squamous cell carcinoma (LUSC).</p> </sec> <sec><title>Methods</title><p>Gene expression profiles and clinical information of Patients with LUSC were downloaded from The Cancer Genome Atlas (TCGA) database. In addition, m6A- and autophagy-related gene profiles were obtained from TCGA and Human Autophagy Database, respectively. Pearson correlation analysis was performed to identify the m6A-related autophagy genes, and univariate Cox regression analysis was conducted to screen for genes associated with prognosis. Based on these genes, LASSO Cox regression analysis was used to construct a prognostic model. The corresponding prognostic score (PS) was calculated, and patients with LUSC were assigned to low- and high-risk groups according to the median PS value. An independent dataset (GSE37745) was used to validate the prognostic ability of the model. CIBERSORT was used to calculate the differences in immune cell infiltration between the high- and low-risk groups.</p> </sec> <sec><title>Results</title><p>Seven m6A-related autophagy genes were screened to construct a prognostic model: <italic>CASP4</italic>, <italic>CDKN1A</italic>, <italic>DLC1</italic>, <italic>ITGB1</italic>, <italic>PINK1</italic>, <italic>TP63</italic>, and <italic>EIF4EBP1</italic>. In the training and validation sets, patients in the high-risk group had worse survival times than those in the low-risk group; the areas under the receiver operating characteristic curves were 0.958 and 0.759, respectively. There were differences in m6A levels and immune cell infiltration between the high- and low-risk groups.</p> </sec> <sec><title>Conclusions</title><p>Our prognostic model of the seven m6A-related autophagy genes had significant predictive value for LUSC; thus, these genes may serve as autophagy-related therapeutic targets in clinical practice.</p> </sec> </abstract>


2021 ◽  
Vol 11 ◽  
Author(s):  
Jian-yu Shi ◽  
Yan-yan Bi ◽  
Bian-fang Yu ◽  
Qing-feng Wang ◽  
Dan Teng ◽  
...  

Despite extensive research, the exact mechanisms involved in colorectal cancer (CRC) etiology and pathogenesis remain unclear. This study aimed to examine the correlation between tumor-associated alternative splicing (AS) events and tumor immune infiltration (TII) in CRC. We analyzed transcriptome profiling and clinical CRC data from The Cancer Genome Atlas (TCGA) database and lists of AS-related and immune-related signatures from the SpliceSeq and Innate databases, respectively to develop and validate a risk model of differential AS events and subsequently a TII risk model. We then conducted a two-factor survival analysis to study the association between TII and AS risk and evaluated the associations between immune signatures and six types of immune cells based on the TIMER database. Subsequently, we studied the distribution of six types of TII cells in high- and low-risk groups for seven AS events and in total. We obtained the profiles of AS events/genes for 484 patients, which included 473 CRC tumor samples and 41 corresponding normal samples, and detected 22581 AS events in 8122 genes. Exon Skip (ES) (8446) and Mutually Exclusive Exons (ME) (74) exhibited the most and fewest AS events, respectively. We then classified the 433 patients with CRC into low-risk (n = 217) and high-risk (n = 216) groups based on the median risk score in different AS events. Compared with patients with low-risk scores (mortality = 11.8%), patients with high-risk scores were associated with poor overall survival (mortality = 27.6%). The risk score, cancer stage, and pathological stage (T, M, and N) were closely correlated with prognosis in patients with CRC (P &lt; 0.001). We identified 6479 differentially expressed genes from the transcriptome profiles of CRC and intersected 468 differential immune-related signatures. High-AS-risk and high-TII-risk predicted a poor prognosis in CRC. Different AS types were associated with different TII risk characteristics. Alternate Acceptor site (AA) and Alternate Promoter (AP) events directly affected the concentration of CD4T cells, and the level of CD8T cells was closely correlated with Alternate Terminator (AT) and Exon Skip (ES) events. Thus, the concentration of CD4T and CD8T cells in the CRC immune microenvironment was not specifically modulated by AS. However, B cell, dendritic cell, macrophage, and neutrophilic cell levels were strongly correlated with AS events. These results indicate adverse associations between AS event risk levels and immune cell infiltration density. Taken together, our findings show a clear association between tumor-associated alternative splicing and immune cell infiltration events and patient outcome and could form a basis for the identification of novel markers and therapeutic targets for CRC and other cancers in the future.


Author(s):  
Liuxing Wu ◽  
Xin Hu ◽  
Hongji Dai ◽  
Kexin Chen ◽  
Ben Liu

Despite robust evidence for the role of m6A in cancer development and progression, its association with immune infiltration and survival outcomes in melanoma remains obscure. Here, we aimed to develop an m6A-related risk signature to improve prognostic and immunotherapy responder prediction performance in the context of melanoma. We comprehensively analyzed the m6A cluster and immune infiltration phenotypes of public datasets. The TCGA (n = 457) and eleven independent melanoma cohorts (n = 758) were used as the training and validation datasets, respectively. We identified two m6A clusters (m6A-clusterA and m6A-clusterB) based on the expression pattern of m6A regulators via unsupervised consensus clustering. IGF2BP1 (7.49%), KIAA1429 (7.06%), and YTHDC1 (4.28%) were the three most frequently mutated genes. There was a correlation between driver genes mutation statuses and the expression of m6A regulators. A significant difference in tumor-associated immune infiltration between two m6A clusters was detected. Compared with m6A-clusterA, the m6A-clusterB was characterized by a lower immune score and immune cell infiltration but higher mRNA expression-based stemness index (mRNAsi). An m6A-related risk signature consisting of 12 genes was determined via Cox regression analysis and divided the patients into low- and high-risk groups (IL6ST, MBNL1, NXT2, EIF2A, CSGALNACT1, C11orf58, CD14, SPI1, NCCRP1, BOK, CD74, PAEP). A nomogram was developed for the prediction of the survival rate. Compared with the high-risk group, the low-risk group was characterized by high expression of immune checkpoints and immunophenoscore (IPS), activation of immune-related pathways, and more enriched in immune cell infiltrations. The low-risk group had a favorable prognosis and contained the potential beneficiaries of the immune checkpoint blockade therapy and verified by the IMvigor210 cohort (n = 298). The m6A-related signature we have determined in melanoma highlights the relationships between m6A regulators and immune cell infiltration. The established risk signature was identified as a promising clinical biomarker of melanoma.


2021 ◽  
Author(s):  
zixuan Wu ◽  
Xuyan Huang ◽  
Min-jie Cai ◽  
Peidong Huang ◽  
Zunhui Guan

Abstract Background In 502 Lung squamous cell carcinoma (LUSC) samples from The Cancer Genome Atlas (TCGA) datasets, the predictive significance of ferroptosis-related long non-coding RNAs (lncRNAs) was investigated. In LUSC, we meant to express how ferroptosis-associated lncRNAs interact with immune cell infiltration. Methods Gene expression enrichment was investigated using gene set enrichment analysis in the Kyoto Encyclopedia of Genes and Genomes. The prognostic model was constructed using Lasso regression. To better understand immune cell infiltration in different risk groups and its relationship to clinical outcome, researchers analyzed by modifications in the tumor microenvironment (TME) and immunological association. The expression of lncRNA was intimately connected to that of ferroptosis, according to co-expression analyses. Ferroptosis-related lncRNAs were shown to be partially overexpressed in high-risk patients in the absence of additional clinical signs, suggesting that they may be incorporated into a prediction model to predict LUSC prognosis. GSEA revealed the immunological and tumor-related pathways in the low-risk group. Results According to TCGA, CCR and inflammation-promoting genes were considered to be significantly different between the low-risk and high-risk groups. The expression of C10orf55, AC016924.1, AL161431.1, LUCAT1, AC104248.1, and MIR3945HG were likewise different in the two risk groups. Conclusion LncRNAs linked to ferroptosis are connected to the occurrence and development of LUSC. With the use of matching prognostic models, the prognosis of LUSC patients can be predicted. In LUSC, ferroptosis-related lncRNAs and immune cell infiltration in the TME might be novel therapeutic targets that should be investigated further.


Sign in / Sign up

Export Citation Format

Share Document