scholarly journals Age-Dependent Activation and Neuronal Differentiation of Lgr5+ Basal Cells in Injured Olfactory Epithelium via Notch Signaling Pathway

2020 ◽  
Vol 12 ◽  
Author(s):  
Xuewen Li ◽  
Meimei Tong ◽  
Li Wang ◽  
Yumei Qin ◽  
Hongmeng Yu ◽  
...  

Aging is an important factor affecting function of smell, leading to the degeneration of mature olfactory sensory neurons and inducing the occurrence of smell loss. The mammalian olfactory epithelium (OE) can regenerate when subjected to chemical assaults. However, this capacity is not limitless. Inactivation of globose basal cells and failure to generate sensory neurons are the main obstacles to prevent the OE regeneration. Here, we found the significant attenuation in mature sensory neuronal generation and apparent transcriptional alternation in the OE from aged mice compared with young ones. The recruitment of leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5)-positive cells in injured OE was weakened in aged mice, and more Lgr5+ cells remained quiescence in aged OE postinjury. Lineage-traced progenies from Lgr5+ cells were significantly fewer in the OE with aging. Moreover, Notch activation enhanced the neuronal regeneration in aged OE, making the regenerative capacity of aged OE comparable with that of young animals after injury. The growth and morphology of three-dimensional (3D)-cultured organoids from the OE of young and aged mice varied and was modulated by small molecules regulating the Notch signaling pathway. Thus, we concluded that activation of Lgr5+ cells in injured OE was age dependent and Notch activation could enhance the capacity of neuronal generation from Lgr5+ cells in aged OE after injury.

2013 ◽  
Vol 13 (9) ◽  
pp. 957-962 ◽  
Author(s):  
Yumei Li ◽  
Jia Ma ◽  
Xiujuan Qian ◽  
Qiong Wu ◽  
Jun Xia ◽  
...  

Author(s):  
Imran Khan ◽  
Sadaf Mahfooz ◽  
Mohd Saeed ◽  
Irfan Ahmad ◽  
Irfan A. Ansari

Background: Recently Notch signaling pathway has gained attention as a potential therapeutic target for chemotherapeutic intervention. However, the efficacy of previously known Notch inhibitors in colon cancer is still unclear. The purpose of this study was to investigate the effect of andrographolide on aberrantly activated Notch signaling in SW-480 cells in vitro. Methods: The cytostatic potential of andrographolide on SW-480 cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay, morphology assessment and colony formation assay. The apoptotic activity was evaluated by FITC Annexin V assay, 4′,6-diamidino-2-phenylindole (DAPI), Hoechst, Rhodamine 123 and Mito Tracker CMXRos staining. Scratch assay for migratory potential assessment. 7’-Dichlorodihydrofluorescein Diacetate (DCFH-DA) staining was used to evaluate the Reactive Oxygen Species (ROS) generation. Relative mRNA expression of Bax, Bcl2, NOTCH 1 and JAGGED 1 was estimated by Real-Time Quantitative Reverse Transcription PCR (qRT-PCR). Cell cycle phase distribution was evaluated Annexin V-FITC/PI staining. Results: MTT assay demonstrated dose and time dependent cytoxicity of andrographolide on SW-480 cells. It also inhibited the migratory and colony forming potential of SW-480 cells. Furthermore, andrographolide also showed disruption of mitochondrial membrane potential and induced apoptosis through nuclear condensation. Flow cytometric evaluation showed andrographolide enhanced early and late apoptotic cells and induced upregulation of proapoptotic (Bax and Bad) and downregulation of antiapoptotic Bcl2 in treated SW-480 cells. Andrographolide augmented intracellular ROS generation and induced G0/G1 phase cell cycle arrest in colon cancer SW480 cells. Furthermore, andrographolide repressed the Notch signaling by decreasing the expression of NOTCH 1 and JAGGED 1. Conclusion: Our findings suggested that andrographolide constraint the growth of SW-480 cells through the inhibition of Notch signaling pathway.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1945
Author(s):  
Sheyla González ◽  
Maximilian Halabi ◽  
David Ju ◽  
Matthew Tsai ◽  
Sophie X. Deng

The Notch signaling pathway plays a key role in proliferation and differentiation. We investigated the effect of Jagged 1 (Jag1)-mediated Notch signaling activation in the human limbal stem/progenitor cell (LSC) population and the stratification of the limbal epithelium in vitro. After Notch signaling activation, there was a reduction in the amount of the stem/progenitor cell population, epithelial stratification, and expression of proliferation markers. There was also an increase of the corneal epithelial differentiation. In the presence of Jag1, asymmetric divisions were decreased, and the expression pattern of the polarity protein Par3, normally present at the apical-lateral membrane of basal cells, was dispersed in the cells. We propose a mechanism in which Notch activation by Jag1 decreases p63 expression at the basal layer, which in turn reduces stratification by decreasing the number of asymmetric divisions and increases differentiation.


2021 ◽  
Vol 70 (3) ◽  
pp. 261-274
Author(s):  
Ricardo Cardoso Castro ◽  
Relber Aguiar Gonçales ◽  
Fabiana Albani Zambuzi ◽  
Fabiani Gai Frantz

Blood ◽  
2011 ◽  
Vol 118 (5) ◽  
pp. 1264-1273 ◽  
Author(s):  
Melanie G. Cornejo ◽  
Vinciane Mabialah ◽  
Stephen M. Sykes ◽  
Tulasi Khandan ◽  
Cristina Lo Celso ◽  
...  

Abstract The NOTCH signaling pathway is implicated in a broad range of developmental processes, including cell fate decisions. However, the molecular basis for its role at the different steps of stem cell lineage commitment is unclear. We recently identified the NOTCH signaling pathway as a positive regulator of megakaryocyte lineage specification during hematopoiesis, but the developmental pathways that allow hematopoietic stem cell differentiation into the erythro-megakaryocytic lineages remain controversial. Here, we investigated the role of downstream mediators of NOTCH during megakaryopoiesis and report crosstalk between the NOTCH and PI3K/AKT pathways. We demonstrate the inhibitory role of phosphatase with tensin homolog and Forkhead Box class O factors on megakaryopoiesis in vivo. Finally, our data annotate developmental mechanisms in the hematopoietic system that enable a decision to be made either at the hematopoietic stem cell or the committed progenitor level to commit to the megakaryocyte lineage, supporting the existence of 2 distinct developmental pathways.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Masaharu Yoshihara ◽  
Teppei Nishino ◽  
Manoj Kumar Yadav ◽  
Akihiro Kuno ◽  
Takeshi Nagata ◽  
...  

Abstract Objective The Delta-Notch signaling pathway induces fine-grained patterns of differentiation from initially homogeneous progenitor cells in many biological contexts, including Drosophila bristle formation, where mathematical modeling reportedly suggests the importance of production rate of the components of this signaling pathway. In contrast, the epithelial differentiation of bile ducts in the developing liver is unique in that it occurs around the portal vein cells, which express extremely high amounts of Delta ligands and act as a disturbance for the amount of Delta ligands in the field by affecting the expression levels of downstream target genes in the cells nearby. In the present study, we mathematically examined the dynamics of the Delta-Notch signaling pathway components in disturbance-driven biliary differentiation, using the model for fine-grained patterns of differentiation. Results A portal vein cell induced a high Notch signal in its neighboring cells, which corresponded to epithelial differentiation, depending on the production rates of Delta ligands and Notch receptors. In addition, this epithelial differentiation tended to occur in conditions where fine-grained patterning was reported to be lacking. These results highlighted the potential importance of the stability towards homogeneity determined by the production rates in Delta ligands and Notch receptors, in a disturbance-dependent epithelial differentiation.


Sign in / Sign up

Export Citation Format

Share Document