scholarly journals On Differential Mechanisms for Underactuated, Lightweight, Adaptive Prosthetic Hands

2021 ◽  
Vol 15 ◽  
Author(s):  
Geng Gao ◽  
Mojtaba Shahmohammadi ◽  
Lucas Gerez ◽  
George Kontoudis ◽  
Minas Liarokapis

Over the last decade underactuated, adaptive robot grippers and hands have received an increased interest from the robotics research community. This class of robotic end-effectors can be used in many different fields and scenarios with a very promising application being the development of prosthetic devices. Their suitability for the development of such devices is attributed to the utilization of underactuation that provides increased functionality and dexterity with reduced weight, cost, and control complexity. The most critical components of underactuated, adaptive hands that allow them to perform a broad set of grasp poses are appropriate differential mechanisms that facilitate the actuation of multiple degrees of freedom using a single motor. In this work, we focus on the design, analysis, and experimental validation of a four output geared differential, a series elastic differential, and a whiffletree differential that can incorporate a series of manual and automated locking mechanisms. The locking mechanisms have been developed so as to enhance the control of the differential outputs, allowing for efficient grasp selection with a minimal set of actuators. The differential mechanisms are applied to prosthetic hands, comparing them and describing the benefits and the disadvantages of each.

2021 ◽  
Author(s):  
Nikolaos Tsokanas ◽  
Giuseppe Abbiati ◽  
Konstantinos Kanellopoulos ◽  
Bozidar Stojadinovic

This technical note presents the experimental validation of a hybrid fire testing coordination algorithm recently developed by some of the authors. For the first time, the algorithm is applied to solve the static response of a multiple-degrees-of-freedom hybrid model.


Author(s):  
Firas Saaduldeen Ahmed ◽  
Noha Abed-Al-Bary Al-jawady

<div>Prosthetic devices are necessary to help amputees achieve their daily activity in the natural way possible. The prosthetic hand has controlled by type of signals such as electromyography (EMG) and mechanomyography (MMG). The MMG signals have represented mechanical signals that generate during muscle contraction. These signals can be detected by accelerometers or microphones and any kind of sensors that can detect muscle vibrations. The contribution of the current paper is classifying hand gestures and control prosthetic hands depends on pattern recognition through accelerometer and microphone are to detect MMG signals. In addition to the cost of prosthetic hand less than other designs. Six subjects are involved. In this present work is the devices. In this study, two of them are amputee subjects. Each subject performs seven classes of movements. Pattern recognition (PR) is used to classify hand gestures. The wavelet packet transform (WPT) and root mean square (RMS) as features extracted from the signals and support vector machine (SVM) as a classifier. The average accuracy is 88.94% for offline tests and 84.45% for online tests. 3D printing technology is used in this study to build prosthetic hands.</div>


Author(s):  
Fadi Dohnal ◽  
Aleš Tondl

Introducing time-periodicity in system parameters may lead, in general, to a dangerous and well-known parametric resonance. In contrast to such a resonance, a properly tuned time-periodicity is capable of transferring energy between vibration modes. Time-periodicity in combination with system damping is capable of efficiently extracting vibrational energy from the system and of amplifying the existing damping affecting transient vibrations. Operating the system at such a specific time-periodicity, the system is tuned at a parametric anti-resonance. The basic principle of this concept has been studied theoretically and was proven experimentally. The physical interpretation of this concept was proposed in “Damping by Parametric Stiffness Excitation: Resonance and Anti-Resonance”, Journal of Vibration and Control, 2008, for a multiple degrees of freedom system. The present contribution highlights those findings on a multiple degrees of freedom system. It is illustrated that a parametric anti-resonance is connected to inducing an energy transfer between two of the many vibration modes of the underlying system with constant coefficients. The induced energy transfer can be utilized to transfer the vibration energy from low frequency to high frequency or vice versa or, in case of system damping, to a more efficient dissipation of vibrational energy. The achievable energy dissipation is most significant if an energy transfer is induced between a lightly damped mode and a strongly damped mode.


Author(s):  
Jiaming Wu ◽  
Jian Chen ◽  
Ying Xu ◽  
Xiaodong Jin ◽  
Lihua Lu ◽  
...  

An alternative type of controllable underwater towed vehicle is proposed. The vehicle is composed of horizontal fixed main wing, adjustable wing flap, and a vertical airfoil main body above which two torpedo-shaped buoyant cylinders are symmetrically fixed. The adjustable wing flap serves as an actuator for deflection of the horizontal fixed main wing to produce enough downward lifting force to the towed vehicle running at a required water depth. Principal function of the torpedo-shaped buoyant cylinders is to create a righting moment or a favorite roll damping for attitude stability of the vehicle during towing operation. Meanwhile two ducted propellers are installed at the sterns of the buoyant cylinders to provide an induced turning moment for the vertical airfoil main body, which in turn produce a driving force for the vehicle in lateral motion. Results of our laboratory experiments indicate that flexible attitude and trajectory manipulations to the vehicle in multiple degrees of freedom can be achieved with the structural style and control mechanisms of the proposed vehicle. The manipulations to the vehicle with the proposed control mechanisms are accomplished by a joint operation of controlling the rotational speeds and directions of the ducted propellers and/or adjusting the deflection of the wing flap. By means of the proposed structural style and control manner, difficulty in designing control system of the vehicle can be reduced greatly, and stronger self stability of the vehicle during its survey towing can be guaranteed.


2008 ◽  
Vol 5 (3) ◽  
pp. 99-117 ◽  
Author(s):  
Deepak Trivedi ◽  
Christopher D. Rahn ◽  
William M. Kier ◽  
Ian D. Walker

Traditional robots have rigid underlying structures that limit their ability to interact with their environment. For example, conventional robot manipulators have rigid links and can manipulate objects using only their specialised end effectors. These robots often encounter difficulties operating in unstructured and highly congested environments. A variety of animals and plants exhibit complex movement with soft structures devoid of rigid components. Muscular hydrostats (e.g. octopus arms and elephant trunks) are almost entirely composed of muscle and connective tissue and plant cells can change shape when pressurised by osmosis. Researchers have been inspired by biology to design and build soft robots. With a soft structure and redundant degrees of freedom, these robots can be used for delicate tasks in cluttered and/or unstructured environments. This paper discusses the novel capabilities of soft robots, describes examples from nature that provide biological inspiration, surveys the state of the art and outlines existing challenges in soft robot design, modelling, fabrication and control.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2582
Author(s):  
Cheikh Brahim ABED ◽  
Sofiane KHELLADI ◽  
Michael DELIGANT ◽  
Abdellatif EL EL MARJANI ◽  
Moisés SOLIS ◽  
...  

Turbomachinery with double counter-rotating impellers offers more degrees of freedom in the choice of design and control parameters compared to conventional machines. For these innovative machines, the literature review shows that more publications concerning axial type turbomachines are available than centrifugal ones. This work deals with a design and experimental performance analysis, applied to two counter-rotating impellers of a centrifugal compressor “CRCC”. CRCC was designed with a specifically developed tool based on mean-line approach coupled with optimization algorithms and a stream-curvature through-flow method to satisfy the design criteria. This paper presents an experimental validation of the CRCC design tool and its performances against the baseline “SR”, composed of one centrifugal impeller and a volute for which experimental data are available. CRCC numeric simulations are also validated by experimental data. For a fair comparison between CRCC and SR, the same volute is used for both configurations. The CRCC studied here includes a first conventional impeller with an axial inlet and a radial outlet, while the second impeller is parametrically designed and can be considered a rotating bladed diffuser with a radial inlet and outlet. The obtained results show that CRCC can deliver a pressure rise increase of two compared to SR, along with an increase of isentropic efficiency and also validate the design method of this novel layout. The experimental results also show that the speed ratio of CRCC has a positive effect on the surge and shock margin.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Nobutsuna Endo

AbstractFew physical models of oral and laryngeal systems for human speech movement exist for computer or mechanical simulators. In particular, a robot tongue mechanism that fully reproduces the deformation motion of the human tongue is lacking. The human tongue is an aggregate of muscles that is devoid of a skeleton. It possesses only a small hyoid. A mechanism that can drive and control the deformation of a soft body, such as the human tongue, along multiple degrees of freedom has not been realized to date. To solve this problem, a wire-pulling mechanism with embedded soft tubes is proposed. Using this mechanism, a flexible tongue that can be deformed along multiple degrees of freedom without breaking the wire is achieved. A prototype planar mechanism with two degrees of freedom that is capable of contraction and bending was fabricated. A deformation model that assumes a piecewise constant curvature (PCC) was formulated. Deformation tests confirmed that the prototype is capable of contraction and bending movements that are consistent with those of the model. Variations in the error with respect to the hardness of the deformable part are discussed, and the limits of the deformation model based on the PCC assumption are presented.


2011 ◽  
Vol 2 (1) ◽  
pp. 59-64 ◽  
Author(s):  
B. Bergelin ◽  
B. Slaboch ◽  
J. Sun ◽  
P. A. Voglewede

Abstract. In light of technological advances, researchers have lost sight of robotic grippers/end effectors design intent. In a semi-structured environment the biomimetic approach is impractical due to the high complexity of the mechanism and control algorithms. Current industrial grippers are robust, but lack the flexibility that allows for in hand manipulation. The authors believe that underactuated grippers provide the best approach to allow for in hand manipulation along with being rugged enough for an industrial setting. Thinking of the robotic gripper and the robotic arm as one system (as opposed to two separate subsystems), one is capable of using the degrees of freedom of the robot in conjunction with that of the gripper to provide the desired motion profile without the complexity of running two subsystems. This paper will outline where recent grippers have failed and will introduce a new design paradigm for grippers along with several underactuated gripper ideas. This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010), 19 August 2010, Montréal, Canada.


Author(s):  
Venketesh N. Dubey ◽  
Richard M. Crowder

This paper presents design for a finger mechanism that has evolved from the stringent requirement of ruggedness and reliability in an industrial application. The paper initially describes the need for a special purpose end effector to operate in a constrained environment and then takes through the various stages of design modifications that were required to ensure safety and reliability. This resulted into a rigid link finger design, which is adaptive to different shapes and operated by a single actuator providing up to 3 degrees of freedom to the finger. A number of such finger mechanisms can be assembled together in different configurations to design special purpose end effectors. This paper covers two such designs and briefly discusses the grasping and control issues associated with the limited number of actuators built into the end effector, and evaluates their suitability in industrial environments. The design overcomes limitations of majority of existing tendon based end effectors requiring a large number of actuators to be controlled thus meeting the space and safety requirements for constrained industrial applications.


Sign in / Sign up

Export Citation Format

Share Document