scholarly journals BK Channel-Mediated Microglial Phagocytosis Alleviates Neurological Deficit After Ischemic Stroke

2021 ◽  
Vol 15 ◽  
Author(s):  
Shuxian Huang ◽  
Tingting Chen ◽  
Qian Suo ◽  
Rubing Shi ◽  
Haroon Khan ◽  
...  

Microglial phagocytosis benefits neurological recovery after stroke. Large-conductance Ca2+-activated K+ currents are expressed in activated microglia, and BK channel knockout aggravates cerebral ischemic injury. However, the effect of BK channels on microglial phagocytosis after ischemic stroke remains unknown. Here, we explored whether BK channel activation is beneficial for neurological outcomes through microglial phagocytosis after ischemic stroke. ICR mice after transient middle cerebral artery occlusion (tMCAO) were treated with dimethyl sulfoxide (DMSO), BK channel activator NS19504, and inhibitor Paxilline. The results showed a decrease in BK channel expression after tMCAO. BK channel activator NS19504 alleviates neurological deficit after experimental modeling of tMCAO in mice compared to the control. Furthermore, we treated primary microglia with DMSO, NS19504, and Paxilline after oxygen glucose deprivation (OGD). NS19504 promoted primary microglial phagocytosing fluorescent beads and neuronal debris, which reduced neuronal apoptosis after stroke. These effects could be reversed by BK channel inhibitor Paxilline. Finally, NS19504 increased relative phosphorylated extracellular signal-regulated kinase 1/2 expression compared to the Paxilline group at the third day after stroke. Our findings indicate that microglial BK channels are a potential target for acute stage of ischemic stroke therapy.

2020 ◽  
Author(s):  
Guoliang Jiang ◽  
Xinglong Yang ◽  
Houjun Zhou ◽  
Jiang Long ◽  
Linming Zhang ◽  
...  

Abstract Background Cerebral ischemic stroke is a highly debilitating disease, in which inflammation is well document to play a pivotal role in its pathophysiology. Microglia are the the major immuncompetent cells of the brain involved in different neuropathologies. Recent discovery of cyclic GMP-AMP synthase(cGAS) activation and its induction of the downstream signaling protein stimulator of interferon genes (STING) is increasingly recognized as a crucial determinant of neuropathophysiology. Although cGAS-STING pathway has been reported to play an important role in inflammatory response in myocardial infarction (MI), its mechanism in inflammatory response in ischemic stroke (IS) has remained to be fully explored.Methods In light of the above, this study sought to explore the roles of cGAS-STING pathway in inflammatory reaction in IS. It is hoped that the results would provide new insights for designing of therapeutic strategies targeting at IS. We used HT22 cells to establish an oxygen-glucose deprivation (OGD) cell model. The supernatant derived from this and which contained OGD-induced DAMPs(OIDs) was used to stimulate the BV2 microglia. Additionally, we used siRNA technology to interfere with cGAS gene expression to observe changes in downstream cytokines. Furthermore, we established middle cerebral artery occlusion (MCAO) mouse model and performed cGAS-siRNA lentivirus infection to further elucidate the mechanism of cGAS-STING pathway in vivo.Results We show here that OIDs strongly activated the cGAS-STING pathway and triggered accumulation of a plethora of proinflammatory factors in activated Microglia. Of note, the cascade reaction was successfully inhibited by cGAS-siRNA. Furthermore, we extended the study of cGAS-STING in a mouse MCAO model, which showed that inhibiting cGAS-STING pathway can effectively diminish MIDs(MCAO-induced DAMPs)-induced neuronal apoptosis and ultimately functional improvement.Conclusion The present results have shown GAS-STING signaling pathway controls the polarity transformation of microglia. The underlying mechanisms of cGAS-STING triggering microglial inflammatory response is now better clarified which made the pathway a potential therapeutic target of IS.


2020 ◽  
Author(s):  
Xiu-Lan Sun ◽  
Teng-Fei Xue ◽  
Juan Ji ◽  
Ruo-Bing Guo ◽  
Yu-Qin Sun ◽  
...  

Abstract Background: Activation of TREM2 protects against brain injury in ischemic stroke via immunoregulation. However, the endogenous ligand of TREM2 remains unknown. Here, we tested the hypothesis that S1P, an immunoregulator, functions as TREM2 ligand to promote microglial phagocytosis.Methods: SD rats, C57BL/6J mice and TREM2-/- mice were subjected to transient middle cerebral artery occlusion, and primary microglia were subjected to oxygen-glucose deprivation. Phagocytosis was investigated via immunofluorescence and two-photon microscope. LC-MS/MS, microscale thermophoresis and surface plasmon resonance were used to confirm the TREM2-S1P interaction.Results: FTY720, an analog of S1P, promoted microglial phagocytosis in ischemic stroke independent of S1PRs expressed on microglia. S1P was confirmed to be a novel endogenous ligand for TREM2 and promote cellular debris clearance. The enhanced cellular debris clearance ameliorated neurological score and infarct volume, relying on TREM2. Moreover, FTY720 was demonstrated to promote hemoglobin clearance in intracerebral hemorrhage and ameliorate hemorrhagic injury.Conlusions: The present work reveals for the first time that S1P acts as a novel endogenous ligand of TREM2 to effectively promote microglial phagocytosis, and provides a new lead compound for developing TREM2 modulator.


Author(s):  
Yong-Ming Zhu ◽  
Liang Lin ◽  
Chao Wei ◽  
Yi Guo ◽  
Yuan Qin ◽  
...  

AbstractNecroptosis initiation relies on the receptor-interacting protein 1 kinase (RIP1K). We recently reported that genetic and pharmacological inhibition of RIP1K produces protection against ischemic stroke-induced astrocytic injury. However, the role of RIP1K in ischemic stroke-induced formation of astrogliosis and glial scar remains unknown. Here, in a transient middle cerebral artery occlusion (tMCAO) rat model and an oxygen and glucose deprivation and reoxygenation (OGD/Re)-induced astrocytic injury model, we show that RIP1K was significantly elevated in the reactive astrocytes. Knockdown of RIP1K or delayed administration of RIP1K inhibitor Nec-1 down-regulated the glial scar markers, improved ischemic stroke-induced necrotic morphology and neurologic deficits, and reduced the volume of brain atrophy. Moreover, knockdown of RIP1K attenuated astrocytic cell death and proliferation and promoted neuronal axonal generation in a neuron and astrocyte co-culture system. Both vascular endothelial growth factor D (VEGF-D) and its receptor VEGFR-3 were elevated in the reactive astrocytes; simultaneously, VEGF-D was increased in the medium of astrocytes exposed to OGD/Re. Knockdown of RIP1K down-regulated VEGF-D gene and protein levels in the reactive astrocytes. Treatment with 400 ng/ml recombinant VEGF-D induced the formation of glial scar; conversely, the inhibitor of VEGFR-3 suppressed OGD/Re-induced glial scar formation. RIP3K and MLKL may be involved in glial scar formation. Taken together, these results suggest that RIP1K participates in the formation of astrogliosis and glial scar via impairment of normal astrocyte responses and enhancing the astrocytic VEGF-D/VEGFR-3 signaling pathways. Inhibition of RIP1K promotes the brain functional recovery partially via suppressing the formation of astrogliosis and glial scar. Graphical Abstract


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2828 ◽  
Author(s):  
Linna Wang ◽  
Xiaoli Wang ◽  
Tingting Li ◽  
Yihua Zhang ◽  
Hui Ji

The inflammatory response mediated by microglia plays a critical role in the progression of ischemic stroke. Phosphoinositide 3-kinase gamma (PI3Kγ) has been implicated in multiple inflammatory and autoimmune diseases, making it a promising target for therapeutic intervention. The aim of this study was to evaluate the efficacy of 8e, a hydrogen sulfide (H2S) releasing derivative of 3-n-butylphthalide (NBP), on brain damage and PI3Kγ signaling following cerebral ischemia injury. 8e significantly reduced sensorimotor deficits, focal infarction, brain edema and neural apoptosis at 72 h after transient middle cerebral artery occlusion (tMCAO). The NOX2 isoform of the NADPH oxidase family is considered a major enzymatic source of superoxide. We found that the release of superoxide, together with the expression of NOX2 subunits p47phox, p-p47phox, and the upstream PI3Kγ/AKT signaling were all down-regulated by 8e, both in the penumbral region of the rat brain and in the primary cultured microglia subjected to oxygen-glucose deprivation (OGD). With the use of siRNA and pharmacological inhibitors, we further demonstrated that 8e regulates the formation of superoxide in activated microglia through the PI3Kγ/AKT/NOX2 signaling pathway and subsequently prevents neuronal death in neighboring neurons. Our experimental data indicate that 8e is a potential candidate for the treatment of ischemic stroke and PI3Kγ-mediated neuroinflammation.


2021 ◽  
Author(s):  
Weifeng Shan ◽  
Huifeng Ge ◽  
Bingquan Chen ◽  
Linger Huang ◽  
Shaojun Zhu ◽  
...  

Abstract MiR-499a-5p was significantly down-regulated in degenerative tissues and correlated with apoptosis. Nonetheless, the biological function of miR-499a-5p in acute ischemic stroke has been still unclear. In this study, we found the plasma levels of miR-499a-5p were significantly down-regulated in 64 ischemic stroke patients and negatively correlated with the National Institutes of Health Stroke Scale score. Then, we constructed cerebral ischemia/reperfusion (I/R) injury in rats after middle cerebral artery occlusion and subsequent reperfusion and oxygen-glucose deprivation and reoxygenation (OGD/R) treated SH-SY5Y cell model. Transfection with miR-499a-5p mimic was accomplished by intracerebroventricular injection in the in vivo I/R injury model. We further found miR-499a-5p overexpression decreased infarct volumes and cell apoptosis in the in vivo I/R stroke model using TTC and TUNEL staining. PDCD4 was a direct target of miR-499a-5p by luciferase report assay and western blotting. Knockdown of PDCD4 reduced the infarct damage and cortical neuron apoptosis caused by I/R injury. MiR-499a-5p exerted neuroprotective roles mainly through inhibiting PDCD4-mediated apoptosis by CCK-8 assay, LDH release assay and flow cytometry analysis. These findings suggest that miR-499a-5p might represent a novel target that regulates brain injury by inhibiting PDCD4-mediating apoptosis.


2019 ◽  
Vol 130 (3) ◽  
pp. 977-988 ◽  
Author(s):  
Yu Shuang Tian ◽  
Di Zhong ◽  
Qing Qing Liu ◽  
Xiu Li Zhao ◽  
Hong Xue Sun ◽  
...  

OBJECTIVEIschemic stroke remains a significant cause of death and disability in industrialized nations. Janus tyrosine kinase (JAK) and signal transducer and activator of transcription (STAT) of the JAK2/STAT3 pathway play important roles in the downstream signal pathway regulation of ischemic stroke–related inflammatory neuronal damage. Recently, microRNAs (miRNAs) have emerged as major regulators in cerebral ischemic injury; therefore, the authors aimed to investigate the underlying molecular mechanism between miRNAs and ischemic stroke, which may provide potential therapeutic targets for ischemic stroke.METHODSThe JAK2- and JAK3-related miRNA (miR-135, miR-216a, and miR-433) expression levels were detected by real-time quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) and Western blot analysis in both oxygen-glucose deprivation (OGD)–treated primary cultured neuronal cells and mouse brain with middle cerebral artery occlusion (MCAO)–induced ischemic stroke. The miR-135, miR-216a, and miR-433 were determined by bioinformatics analysis that may target JAK2, and miR-216a was further confirmed by 3′ untranslated region (3′UTR) dual-luciferase assay. The study further detected cell apoptosis, the level of lactate dehydrogenase, and inflammatory mediators (inducible nitric oxide synthase [iNOS], matrix metalloproteinase–9 [MMP-9], tumor necrosis factor–α [TNF-α], and interleukin-1β [IL-1β]) after cells were transfected with miR-NC (miRNA negative control) or miR-216a mimics and subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) damage with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, annexin V–FITC/PI, Western blots, and enzyme-linked immunosorbent assay detection. Furthermore, neurological deficit detection and neurological behavior grading were performed to determine the infarction area and neurological deficits.RESULTSJAK2 showed its highest level while miR-216a showed its lowest level at day 1 after ischemic reperfusion. However, miR-135 and miR-433 had no obvious change during the process. The luciferase assay data further confirmed that miR-216a can directly target the 3′UTR of JAK2, and overexpression of miR-216a repressed JAK2 protein levels in OGD/R-treated neuronal cells as well as in the MCAO model ischemic region. In addition, overexpression of miR-216a mitigated cell apoptosis both in vitro and in vivo, which was consistent with the effect of knockdown of JAK2. Furthermore, the study found that miR-216a obviously inhibited the inflammatory mediators after OGD/R, including inflammatory enzymes (iNOS and MMP-9) and cytokines (TNF-α and IL-1β). Upregulating miR-216a levels reduced ischemic infarction and improved neurological deficit.CONCLUSIONSThese findings suggest that upregulation of miR-216a, which targets JAK2, could induce neuroprotection against ischemic injury in vitro and in vivo, which provides a potential therapeutic target for ischemic stroke.


Stroke ◽  
2019 ◽  
Vol 50 (7) ◽  
pp. 1850-1858 ◽  
Author(s):  
Yiming Deng ◽  
Duanduan Chen ◽  
Luyao Wang ◽  
Feng Gao ◽  
Bo Jin ◽  
...  

Background and Purpose— Ischemic stroke is one of the leading causes of morbidity and mortality worldwide and a major cause of long-term disability. Recently, long noncoding RNAs have been revealed, which are tightly associated with several human diseases. However, the functions of long noncoding RNAs in ischemic stroke still remain largely unknown. In the current study, for the first time, we investigated the role of long noncoding RNA Nespas in ischemic stroke. Methods— We used in vivo models of middle cerebral artery occlusion and in vitro models of oxygen-glucose deprivation to illustrate the effect of long noncoding RNA Nespas on ischemic stroke. Results— We found expression of Nespas was significantly increased in ischemic cerebral tissues and oxygen-glucose deprivation–treated BV2 cells in a time-dependent manner. Silencing of Nespas aggravated middle cerebral artery occlusion operation–induced IR injury and cell death. In addition, proinflammatory cytokine production and NF-κB (nuclear factor-κB) signaling activation were inhibited by Nespas overexpression. TAK1 (transforming growth factor-β–activated kinase 1) was found to directly interact with Nespas, and TAK1 activation was significantly suppressed by Nespas. At last, we found Nespas-inhibited TRIM8 (tripartite motif 8)-induced K63-linked polyubiquitination of TAK1. Conclusions— We showed that Nespas played anti-inflammatory and antiapoptotic roles in cultured microglial cells after oxygen-glucose deprivation stimulation and in mice after ischemic stroke by inhibiting TRIM8-related K63-linked polyubiquitination of TAK1.


2016 ◽  
Vol 44 (05) ◽  
pp. 927-941 ◽  
Author(s):  
Qichun Zhang ◽  
Huimin Bian ◽  
Liwei Guo ◽  
Huaxu Zhu

Berberine exerts neuroprotective and modulates hypoxia inducible factor-1-alpha (HIF-1[Formula: see text]. Based on the role of HIF-1[Formula: see text] in hypoxia preconditioning and association between HIF-1[Formula: see text] and sphingosine-1-phosphate (S1P), we hypothesized that berberine preconditioning (BP) would ameliorate the cerebral injury induced by ischemia through activating the system of HIF-1[Formula: see text] and S1P. Adult male rats with middle cerebral artery occlusion (MCAO) and rat primary cortical neurons treated with oxygen and glucose deprivation (OGD) with BP at 24[Formula: see text]h (40[Formula: see text]mg/kg) and 2[Formula: see text]h (10[Formula: see text][Formula: see text]mol/L), respectively, were used to determine the neuroprotective effects. The HIF-1[Formula: see text] accumulation, and S1P metabolism were assayed in the berberine-preconditioned neurons, and the HIF-1[Formula: see text]-mediated transcriptional modulation of sphingosine kinases (Sphk) 1 and 2 was analyzed using chromatin immunoprecipitation and real-time polymerase chain reaction. BP significantly prevented cerebral ischemic injury in the MCAO rats at 24[Formula: see text]h and 72[Formula: see text]h following ischemia/reperfusion. In OGD-treated neurons, BP enhanced HIF-1[Formula: see text] accumulation with activation of PI3K/Akt, and induced S1P production by activating Sphk2 via the promotion of HIF-1[Formula: see text]-mediated Sphk2 transcription. In conclusion, BP activated endogenous neuroprotective mechanisms associated with the S1P/HIF-1 pathway and helped protect neuronal cells against hypoxia/ischemia.


2019 ◽  
Author(s):  
Ruoxue Wen ◽  
Hui Shen ◽  
Shuxian Huang ◽  
Liping Wang ◽  
Zongwei Li ◽  
...  

Abstract Background Clearance of damaged cells is beneficial for the functional recovery after brain injury. Phagocytosis of tissue and cell debris is an important function of microglia during the development and pathological diseases. However, which specific phagocytic receptor mediates microglial phagocytosis after ischemic stroke is obscure. Methods ICR mice (n=59) underwent 90 minutes transient middle cerebral artery occlusion. P2Y6R, Iba1, GFAP and Tuj-1 double immunostainings were performed to determine P2Y6 receptor location. MRS2578 was injected into mice to inhibit P2Y6 receptor activity. Iba1 and TUNEL staining were performed to examine microglia phagocytosis. Modified neurological severity scores and Grid walking test were used to evaluate the neurological function after ischemic stoke. The expression of IL-1 α, IL-1 β, IL-6, IL-10, TNF-α, TGF-β and MPO was used to examine the inflammation response in the brain. Results The expression of P2Y6 receptor in microglia increased within three days after transient middle cerebral artery occlusion. Inhibition of microglial phagocytosis by the selective inhibitor MRS2578 enlarged the brain atrophy and edema volume after ischemic stroke, subsequently aggravated neurological function using modified neurological severity scores and Grid walking test. MRS2578 treatment had no effect on the expression of IL-1α, IL-1β, IL-6, IL-10, TNF-α, TGF-β and MPO after ischemic stroke, which suggested that it had no effect on the inflammation in the brain. Finally, we found that the expression of myosin light chain kinase decreased after microglial phagocytosis inhibition in ischemic mice, which suggested that myosin light chain kinase was involved in P2Y6 receptor mediated phagocytosis. Conclusion Our results indicated that the P2Y6 receptor mediated microglial phagocytosis played an important role during the acute stage of ischemic stroke, which was a potential target for ischemic stroke treatment.


Sign in / Sign up

Export Citation Format

Share Document