Berberine Preconditioning Protects Neurons Against Ischemia via Sphingosine-1-Phosphate and Hypoxia-Inducible Factor-1α

2016 ◽  
Vol 44 (05) ◽  
pp. 927-941 ◽  
Author(s):  
Qichun Zhang ◽  
Huimin Bian ◽  
Liwei Guo ◽  
Huaxu Zhu

Berberine exerts neuroprotective and modulates hypoxia inducible factor-1-alpha (HIF-1[Formula: see text]. Based on the role of HIF-1[Formula: see text] in hypoxia preconditioning and association between HIF-1[Formula: see text] and sphingosine-1-phosphate (S1P), we hypothesized that berberine preconditioning (BP) would ameliorate the cerebral injury induced by ischemia through activating the system of HIF-1[Formula: see text] and S1P. Adult male rats with middle cerebral artery occlusion (MCAO) and rat primary cortical neurons treated with oxygen and glucose deprivation (OGD) with BP at 24[Formula: see text]h (40[Formula: see text]mg/kg) and 2[Formula: see text]h (10[Formula: see text][Formula: see text]mol/L), respectively, were used to determine the neuroprotective effects. The HIF-1[Formula: see text] accumulation, and S1P metabolism were assayed in the berberine-preconditioned neurons, and the HIF-1[Formula: see text]-mediated transcriptional modulation of sphingosine kinases (Sphk) 1 and 2 was analyzed using chromatin immunoprecipitation and real-time polymerase chain reaction. BP significantly prevented cerebral ischemic injury in the MCAO rats at 24[Formula: see text]h and 72[Formula: see text]h following ischemia/reperfusion. In OGD-treated neurons, BP enhanced HIF-1[Formula: see text] accumulation with activation of PI3K/Akt, and induced S1P production by activating Sphk2 via the promotion of HIF-1[Formula: see text]-mediated Sphk2 transcription. In conclusion, BP activated endogenous neuroprotective mechanisms associated with the S1P/HIF-1 pathway and helped protect neuronal cells against hypoxia/ischemia.

2021 ◽  
Vol 118 (32) ◽  
pp. e2018850118
Author(s):  
Hiroo Takahashi ◽  
Ryo Asahina ◽  
Masayuki Fujioka ◽  
Takeshi K. Matsui ◽  
Shigeki Kato ◽  
...  

Ischemic stroke, which results in loss of neurological function, initiates a complex cascade of pathological events in the brain, largely driven by excitotoxic Ca2+ influx in neurons. This leads to cortical spreading depolarization, which induces expression of genes involved in both neuronal death and survival; yet, the functions of these genes remain poorly understood. Here, we profiled gene expression changes that are common to ischemia (modeled by middle cerebral artery occlusion [MCAO]) and to experience-dependent activation (modeled by exposure to an enriched environment [EE]), which also induces Ca2+ transients that trigger transcriptional programs. We found that the activity-dependent transcription factor Npas4 was up-regulated under MCAO and EE conditions and that transient activation of cortical neurons in the healthy brain by the EE decreased cell death after stroke. Furthermore, both MCAO in vivo and oxygen-glucose deprivation in vitro revealed that Npas4 is necessary and sufficient for neuroprotection. We also found that this protection involves the inhibition of L-type voltage-gated Ca2+ channels (VGCCs). Next, our systematic search for Npas4-downstream genes identified Gem, which encodes a Ras-related small GTPase that mediates neuroprotective effects of Npas4. Gem suppresses the membrane localization of L-type VGCCs to inhibit excess Ca2+ influx, thereby protecting neurons from excitotoxic death after in vitro and in vivo ischemia. Collectively, our findings indicate that Gem expression via Npas4 is necessary and sufficient to promote neuroprotection in the injured brain. Importantly, Gem is also induced in human cerebral organoids cultured under an ischemic condition, revealing Gem as a new target for drug discovery.


Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
Mushfiquddin Khan ◽  
Tajinder S Dhammu ◽  
Fumiyo Matsuda ◽  
Inderjit Singh ◽  
Avtar K Singh

Background: In stroke patients, the stimulation of neurorepair mechanisms is necessary to reduce morbidity and disability. Our studies on brain and spinal cord trauma show that an exogenous treatment with the S-nitrosylating agent S-nitrosoglutathione (GSNO) stimulates neurorepair and aids functional recovery. Using a rat model of cerebral ischemia reperfusion (IR), we tested the hypothesis that GSNO invokes the neurorepair process and improves neurobehavioral functions through the angiogenic HIF-1α/VEGF pathway. Methods: Stroke was induced by middle cerebral artery occlusion for 60 min followed by reperfusion in adult male rats. The injured animals were treated with vehicle (IR group, n=7), GSNO (0.25 mg/kg, GSNO group, n=7), and GSNO plus the HIF-1α inhibitor 2-mthoxyestradiol (0.25 mg/kg GSNO+5.0 mg/kg ME, GSNO+ME group, n=7). The groups were studied for 14 days to determine neurorepair mechanisms and functional recovery. Brain capillary endothelial cells were used to show that GSNO promotes angiogenesis and that GSNO-mediated induction of VEGF and the stimulation of angiogenesis are dependent on HIF-1α activity. Results: GSNO treatment of IR enhanced the expression of HIF-1α, VEGF, and PECAM-1. This GSNO treatment also led to increased expression of neurorepair mediators including BDNF. Increased expression of VEGF/BDNF and the degree of tube formation (angiogenesis) by GSNO were reduced in an endothelial cell culture model after the inhibition of HIF-1α by ME. ME treatment of the GSNO group also blocked not only GSNO’s effect of reduced infarct volume (p<0.05) and enhanced expression of PECAM-1but also its improvement of motor and neurological functions (p<0.001). Conclusions: GSNO shows therapeutic promise for stroke by stimulating the process of neurorepair and aiding functional recovery through the HIF-1α/VEGF/PECAM-1 dependent pathway.


2013 ◽  
Vol 33 (3) ◽  
pp. 396-406 ◽  
Author(s):  
Wenjun Yan ◽  
Zongping Fang ◽  
Qianzi Yang ◽  
Hailong Dong ◽  
Yan Lu ◽  
...  

Our previous studies have shown that hyperbaric oxygen preconditioning (HBO-PC) induces tolerance to cerebral ischemia/reperfusion (I/R). This study aimed to investigate whether SirT1, a class III histone deacetylase, is involved in neuroprotection elicited by HBO-PC in animal and cell culture models of ischemia. Rats were subjected to middle cerebral artery occlusion for 120 minutes after HBO-PC (once a day for 5 days). Primary cultured cortical neurons were exposed to 2 hours of HBO-PC after 2 hours of oxygen–glucose deprivation (OGD). We showed that HBO-PC increased SirT1 protein and mRNA expression, promoted neurobehavioral score, reduced infarct volume, and improved morphology at 24 hours and 7 days after cerebral I/R. Neuroprotection of HBO-PC was attenuated by SirT1 inhibitor EX527 and SirT1 knockdown by short interfering RNA (siRNA), whereas it was mimicked by SirT1 activator resveratrol. Furthermore, HBO-PC enhanced SirT1 expression and cell viability and reduced lactate dehydrogenase release 24 hours after OGD/re-oxygenation. The neuroprotective effect of HBO-PC was emulated through upregulating SirT1 and, reversely, attenuated through downregulating SirT1. The modulation of SirT1 was made by adenovirus infection carrying SirT1 or SirT1 siRNA. Besides, SirT1 increased B-cell lymphoma 2 (Bcl-2) expression and decrease cleaved caspase 3. These results indicate that SirT1 mediates HBO-PC-induced tolerance to cerebral I/R through inhibition of apoptosis.


2021 ◽  
Vol 23 (3) ◽  
pp. 420-436
Author(s):  
Hyuk Sung Kwon ◽  
Ye Eun Kim ◽  
Hyun-Hee Park ◽  
Jeong-Woo Son ◽  
Hojin Choi ◽  
...  

Background and Purpose Previous studies have revealed the diverse neuroprotective effects of GV1001. In this study, we investigated the effects of GV1001 on focal cerebral ischemia-reperfusion injury (IRI) in rats and oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury in neural stem cells (NSCs) and cortical neurons. Methods Focal cerebral IRI was induced by transient middle cerebral artery occlusion (MCAO). Brain diffusion-weighted imaging (DWI) was performed 2 hours after occlusion, and a total of 37 rats were treated by reperfusion with GV1001 or saline 2 hours after occlusion. Fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging, immunohistochemistry, and neurobehavioral function analyses were performed. Additionally, OGD/R-injured NSCs and cortical neurons were treated with different GV1001 concentrations. Cell viability, proliferation, migration, and oxidative stress were determined by diverse molecular analyses. Results In the stroke model, GV1001 protected neural cells against IRI. The most effective dose of GV1001 was 60 μM/kg. The infarct volume on FLAIR 48 hours after MCAO compared to lesion volume on DWI showed a significantly smaller ratio in the GV1001-treated group. GV1001-treated rats exhibited better behavioral functions than the saline-treated rats. Treatment with GV1001 increased the viability, proliferation, and migration of the OGD/R-injured NSCs. Free radicals were significantly restored by treatment with GV1001. These neuroprotective effects of GV1001 have also been demonstrated in OGD/R-injured cortical neurons. Conclusions The results suggest that GV1001 has neuroprotective effects against IRI in NSCs, cortical neurons, and the rat brain. These effects are mediated through the induction of cellular proliferation, mitochondrial stabilization, and anti-apoptotic, anti-aging, and antioxidant effects.


2016 ◽  
Vol 40 (3-4) ◽  
pp. 477-485 ◽  
Author(s):  
Xianfang Meng ◽  
Guangpin Chu ◽  
Zhihua Yang ◽  
Ping Qiu ◽  
Yue Hu ◽  
...  

Background/Aims: Metformin, the common medication for type II diabetes, has protective effects on cerebral ischemia. However, the molecular mechanisms are far from clear. Mitotic arrest deficient 2-like protein 2 (MAD2B), an inhibitor of the anaphase-promoting complex (APC), is widely expressed in hippocampal and cortical neurons and plays an important role in mediating high glucose-induced neurotoxicity. The present study investigated whether metformin modifies the expression of MAD2B and to exert its neuroprotective effects in primary cultured cortical neurons during oxygen-glucose deprivation/reoxygenation (OGD/R), a widely used in vitro model of ischemia/reperfusion. Methods: Primary cortical neurons were cultured, deprived of oxygen-glucose for 1 h, and then recovered with oxygen-glucose for 12 h and 24 h. Cell viability was measured by detecting the levels of lactate dehydrogenase (LDH) in culture medium. The levels of MAD2B, cyclin B and p-histone 3 were measured by Western blot. Results: Cell viability of neurons was reduced under oxygen-glucose deprivation/reoxygenation (OGD/R). The expression of MAD2B was increased under OGD/R. The levels of cyclin B1, which is a substrate of APC, were also increased. Moreover, OGD/R up-regulated the phosphorylation levels of histone 3, which is the induction of aberrant re-entry of post-mitotic neurons. However, pretreatment of neurons with metformin alleviated OGD/R-induced injury. Metformin further decreased the expression of MAD2B, cyclin B1 and phosphorylation levels of histone 3. Conclusion: Metformin exerts its neuroprotective effect through regulating the expression of MAD2B in neurons under OGD/R.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Nan Zhang ◽  
Xiangjian Zhang ◽  
Xiaoxia Liu ◽  
Hong Wang ◽  
Jing Xue ◽  
...  

The most effective way to contain cerebral ischemic injury is reperfusion; however, reperfusion itself may result in tissue injury, for which inflammatory damage is one of the main causative factors. NALP3 inflammasome is a multiprotein complex. It consists of NALP3, ASC, and caspase-1, whose function is to switch on the inflammatory process. Chrysophanol is an extract from plants of Rheum genus and it possesses many pharmacological effects including its anti-inflammation activity. In this study, the effects of chrysophanol in cerebral ischemia/reperfusion and the potential mechanisms were investigated. Male CD1 mice were subject to transient middle cerebral artery occlusion (tMCAO). The NALP3 inflammasome activation status and its dynamic expression during the natural inflammatory response induced by tMCAO were first profiled. The neuroprotective effects of chrysophanol were then assessed and the potential mechanisms mediating the observed neuroprotection were then explored. Physical parameters including neurological deficit, infarct size, brain edema, and BBB permeability were measured at 24 h after tMCAO. Confocal microscopy, Western blotting, immunohistochemistry, and qRT-PCR techniques were utilized to analyze the expression of NALP3 inflammasome and IL-1β. Our results indicated that the brain tissue damage during cerebral ischemia/reperfusion is accompanied by NALP3 inflammasome activation. Chrysophanol could inhibit the activation of NALP3 inflammasome and protect cerebral ischemic stroke.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guofeng Cai ◽  
Guoliang Cai ◽  
Haichun Zhou ◽  
Zhe Zhuang ◽  
Kai Liu ◽  
...  

Abstract Background Cerebral infarction ranks as the second leading cause of disability and death globally, and inflammatory response of glial cells is the main cause of brain damage during cerebral infarction. Methods Studies have shown that mesenchymal stem cells (MSCs) can secrete exosomes and contribute to cerebral disease. Here, we would explore the function of MSC-derived exosome in cerebral infarction. Results Microarray indicated a decrease of miR-542-3p and an increase of Toll-Like Receptor 4 (TLR4) in middle cerebral artery occlusion (MCAO) mice comparing with sham mice. And luciferase and RIP analysis indicated a binding of miR-542-3p and TLR4. Then, we injected AAV9-miR-542-3p into paracele of sham or MCAO mice. Functional analysis showed that AAV9-miR-542-3p inhibited infarction area and the number of degenerating neurons and suppressed inflammatory factors’ expression and inflammatory cell infiltration. As well, transfection of miR-542-3p mimics into HA1800 cells underwent oxygen and glucose deprivation (OGD). Similarly, overexpression of miR-542-3p alleviated OGD induced cell apoptosis, ROS, and activation of inflammation response. Moreover, miR-542-3p could be packaged into MSCs and secreted into HA1800 cells. The extractive exosome-miR-21-3p treatment relieved MCAO- or OGD-induced cerebral injury and inflammation through targeting TLR4. Conclusion These results confirmed that MSC-derived exosome miR-542-3p prevented ischemia-induced glial cell inflammatory response via inhibiting TLR4. These results suggest possible therapeutic strategies for using exosome delivery of miR-542-3p to cure cerebral ischemic injury.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Xiangli Yan ◽  
Aiming Yu ◽  
Haozhen Zheng ◽  
Shengxin Wang ◽  
Yingying He ◽  
...  

Neuronal apoptosis induced by oxidative stress is a major pathological process that occurs after cerebral ischemia-reperfusion. Calycosin-7-O-β-D-glucoside (CG) is a representative component of isoflavones in Radix Astragali (RA). Previous studies have shown that CG has potential neuroprotective effects. However, whether CG alleviates neuronal apoptosis through antioxidant stress after ischemia-reperfusion remains unknown. To investigate the positive effects of CG on oxidative stress and apoptosis of neurons, we simulated the ischemia-reperfusion process in vitro using an immortalized hippocampal neuron cell line (HT22) and oxygen-glucose deprivation/reperfusion (OGD/R) model. CG significantly improved cell viability and reduced oxidative stress and neuronal apoptosis. In addition, CG treatment upregulated the expression of SIRT1, FOXO1, PGC-1α, and Bcl-2 and downregulated the expression of Bax. In summary, our findings indicate that CG alleviates OGD/R-induced damage via the SIRT1/FOXO1/PGC-1α signaling pathway. Thus, CG maybe a promising therapeutic candidate for brain injury associated with ischemic stroke.


Human Cell ◽  
2021 ◽  
Author(s):  
Jiaying Zhu ◽  
Zhu Zhu ◽  
Yipin Ren ◽  
Yukang Dong ◽  
Yaqi Li ◽  
...  

AbstractLINGO-1 may be involved in the pathogenesis of cerebral ischemia. However, its biological function and underlying molecular mechanism in cerebral ischemia remain to be further defined. In our study, middle cerebral artery occlusion/reperfusion (MACO/R) mice model and HT22 cell oxygen–glucose deprivation/reperfusion (OGD/R) were established to simulate the pathological process of cerebral ischemia in vivo and in vitro and to detect the relevant mechanism. We found that LINGO-1 mRNA and protein were upregulated in mice and cell models. Down-regulation LINGO-1 improved the neurological symptoms and reduced pathological changes and the infarct size of the mice after MACO/R. In addition, LINGO-1 interference alleviated apoptosis and promoted cell proliferation in HT22 of OGD/R. Moreover, down-regulation of LINGO-1 proved to inhibit nuclear translocation of p-NF-κB and reduce the expression level of p-JAK2 and p-STAT3. In conclusion, our data suggest that shLINGO-1 attenuated ischemic injury by negatively regulating NF-KB and JAK2/STAT3 pathways, highlighting a novel therapeutic target for ischemic stroke.


2021 ◽  
pp. 1-8
Author(s):  
Hong Liu ◽  
Qiaomei Dai ◽  
Jing Yang ◽  
Yuwei Zhang ◽  
Bo Zhang ◽  
...  

<b><i>Introduction:</i></b> Cerebral ischemia and reperfusion (CI/R) injury is a devasting cerebrovascular disease, accompanied with ischemia stroke, cerebral infarction. Zuogui Pill (ZGP), as a Chinese traditional medicine, is proved to be effective in many diseases and cancers. Our study aimed to detect the roles of ZGP in CI/R injury. <b><i>Methods:</i></b> Neural stem cells were isolated from rats and induced by oxygen and glucose deprivation and recovery. CCK-8 and flow cytometry were applied to assess the function of ZGP on cell viability and apoptosis. Rat CI/R injury models were established by the middle cerebral artery occlusion and reperfusion. The function of ZGP on CI/R injury was identified via evaluating modified neurological severity score, infarct area, and cognitive impairment. <b><i>Results:</i></b> Compared to the control, the cell viability was obviously decreased in the oxygen and glucose deprivation and recovery (OGD/R) group, while the adverse influence on cells was reversed by cultured plus 10% ZGP serum. Consistently, ZGP attenuated the influence of OGD/R on cell apoptosis. More importantly, ZGP could alleviate CI/R injury of rats by reducing neurological damage and infarct area and promoting cognitive function. <b><i>Conclusion:</i></b> This study provided protective roles of ZGP on cell viability and apoptosis induced by OGD/R. In addition, ZGP played protective roles on neuroinflammation and cognitive function in rats.


Sign in / Sign up

Export Citation Format

Share Document