scholarly journals Neuroendocrine Mechanisms Underlying Non-breeding Aggression: Common Strategies Between Birds and Fish

2021 ◽  
Vol 15 ◽  
Author(s):  
Laura Quintana ◽  
Cecilia Jalabert ◽  
H. Bobby Fokidis ◽  
Kiran K. Soma ◽  
Lucia Zubizarreta

Aggression is an adaptive behavior that plays an important role in gaining access to limited resources. Aggression may occur uncoupled from reproduction, thus offering a valuable context to further understand its neural and hormonal regulation. This review focuses on the contributions from song sparrows (Melospiza melodia) and the weakly electric banded knifefish (Gymnotus omarorum). Together, these models offer clues about the underlying mechanisms of non-breeding aggression, especially the potential roles of neuropeptide Y (NPY) and brain-derived estrogens. The orexigenic NPY is well-conserved between birds and teleost fish, increases in response to low food intake, and influences sex steroid synthesis. In non-breeding M. melodia, NPY increases in the social behavior network, and NPY-Y1 receptor expression is upregulated in response to a territorial challenge. In G. omarorum, NPY is upregulated in the preoptic area of dominant, but not subordinate, individuals. We hypothesize that NPY may signal a seasonal decrease in food availability and promote non-breeding aggression. In both animal models, non-breeding aggression is estrogen-dependent but gonad-independent. In non-breeding M. melodia, neurosteroid synthesis rapidly increases in response to a territorial challenge. In G. omarorum, brain aromatase is upregulated in dominant but not subordinate fish. In both species, the dramatic decrease in food availability in the non-breeding season may promote non-breeding aggression, via changes in NPY and/or neurosteroid signaling.

2020 ◽  
Vol 6 (47) ◽  
pp. eabd2163
Author(s):  
Youngseob Jung ◽  
Ji-Young Seo ◽  
Hye Guk Ryu ◽  
Do-Yeon Kim ◽  
Kyung-Ha Lee ◽  
...  

The AMPA receptor subunit GluA1 is essential for induction of synaptic plasticity. While various regulatory mechanisms of AMPA receptor expression have been identified, the underlying mechanisms of GluA1 protein synthesis are not fully understood. In neurons, axonal and dendritic mRNAs have been reported to be translated in a cap-independent manner. However, molecular mechanisms of cap-independent translation of synaptic mRNAs remain largely unknown. Here, we show that GluA1 mRNA contains an internal ribosome entry site (IRES) in the 5′UTR. We also demonstrate that heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 interacts with GluA1 mRNA and mediates internal initiation of GluA1. Brain-derived neurotrophic factor (BDNF) stimulation increases IRES-mediated GluA1 translation via up-regulation of HNRNP A2/B1. Moreover, BDNF-induced GluA1 expression and dendritic spine density were significantly decreased in neurons lacking hnRNP A2/B1. Together, our data demonstrate that IRES-mediated translation of GluA1 mRNA is a previously unidentified feature of local expression of the AMPA receptor.


2009 ◽  
Vol 22 (1) ◽  
pp. 82-92 ◽  
Author(s):  
Dorothy Teegarden ◽  
Shawn S. Donkin

The growing incidence of prediabetes and clinical type 2 diabetes, in part characterised by insulin resistance, is a critical health problem with consequent devastating personal and health-care costs. Vitamin D status, assessed by serum 25-hydroxyvitamin D levels, is inversely associated with diabetes in epidemiological studies. Several clinical intervention studies also support that vitamin D, or its active metabolite 1,25-dihydroxyvitamin D (1,25(OH)2D), improves insulin sensitivity, even in subjects with glucose metabolism parameters classified within normal ranges. The mechanisms proposed which may underlie this effect include potential relationships with improvements in lean mass, regulation of insulin release, altered insulin receptor expression and specific effects on insulin action. These actions may be mediated by systemic or local production of 1,25(OH)2D or by suppression of parathyroid hormone, which may function to negatively affect insulin sensitivity. Thus, substantial evidence supports a relationship between vitamin D status and insulin sensitivity; however, the underlying mechanisms require further exploration.


2018 ◽  
Vol 19 (11) ◽  
pp. 3552 ◽  
Author(s):  
Baile Wang ◽  
Kenneth Cheng

As a cellular energy sensor and regulator, adenosine monophosphate (AMP)-activated protein kinase (AMPK) plays a pivotal role in the regulation of energy homeostasis in both the central nervous system (CNS) and peripheral organs. Activation of hypothalamic AMPK maintains energy balance by inducing appetite to increase food intake and diminishing adaptive thermogenesis in adipose tissues to reduce energy expenditure in response to food deprivation. Numerous metabolic hormones, such as leptin, adiponectin, ghrelin and insulin, exert their energy regulatory effects through hypothalamic AMPK via integration with the neural circuits. Although activation of AMPK in peripheral tissues is able to promote fatty acid oxidation and insulin sensitivity, its chronic activation in the hypothalamus causes obesity by inducing hyperphagia in both humans and rodents. In this review, we discuss the role of hypothalamic AMPK in mediating hormonal regulation of feeding and adaptive thermogenesis, and summarize the diverse underlying mechanisms by which central AMPK maintains energy homeostasis.


1998 ◽  
Vol 66 (5-6) ◽  
pp. 319-326 ◽  
Author(s):  
Marie Blanchere ◽  
Isabelle Berthaut ◽  
Marie-claire Portois ◽  
Chidi Mestayer ◽  
Irène Mowszowicz

2005 ◽  
Vol 29 (4) ◽  
pp. 582-592 ◽  
Author(s):  
T.J. Caperna ◽  
A.E. Shannon ◽  
S.M. Poch ◽  
W.M. Garrett ◽  
M.P. Richards

2008 ◽  
Vol 14 (6) ◽  
pp. 728-733 ◽  
Author(s):  
C Trebst ◽  
F König ◽  
RM Ransohoff ◽  
W Brück ◽  
M Stangel

Remyelination in multiple sclerosis (MS) occurs spontaneously and extensively. The underlying mechanisms, however, are only partly understood. Findings in experimental animal settings suggest that inflammation promotes remyelination and repair. Here, we characterized the chemokine receptor expression profiles of macrophages/microglia in early remyelinating and completely remyelinated lesions compared with active demyelinating and inactive demyelinated MS lesions obtained in the early disease course. Biopsy material consisting of 16 MS cases was available for this study. We found that macrophages/microglia within early remyelinating lesions expressed predominantly CCR5. Our findings implicate a possible role of CCR5+ cells in initiating remyelination.


2021 ◽  
Author(s):  
Kayla R. Nygaard ◽  
Raylynn G. Swift ◽  
Rebecca M. Glick ◽  
Rachael E. Wagner ◽  
Susan E. Maloney ◽  
...  

ABSTRACTWilliams Syndrome is caused by a deletion of 26-28 genes on chromosome 7q11.23. Patients with this disorder have distinct behavioral phenotypes including learning deficits, anxiety, increased phobias, and hypersociability. Some studies also suggest elevated blood oxytocin and altered oxytocin receptor expression, and this oxytocin dysregulation is hypothesized to be involved in the underlying mechanisms driving a subset of these phenotypes. A ‘Complete Deletion’ mouse, modeling the hemizygous critical region deletion in Williams Syndrome, recapitulates many of the phenotypes present in humans. These Complete Deletion mice also exhibited impaired fear responses in the conditioned fear task. Here, we address whether oxytocin dysregulation is responsible for this impaired associative fear memory response. We show direct delivery of an oxytocin receptor antagonist to the central nervous system did not rescue the attenuated contextual or cued fear memory responses in Complete Deletion mice. Thus, increased oxytocin signaling is not acutely responsible for this phenotype. We also evaluated oxytocin receptor and serotonin transporter availability in regions related to fear learning, memory, and sociability using autoradiography in wild type and Complete Deletion mice. While we identified trends in lowered oxytocin receptor expression in the lateral septal nucleus, and trends towards lowered serotonin transporter availability in the striatum and orbitofrontal cortex, we found no significant differences after correction. Together, these data suggest the fear conditioning anomalies in the Williams Syndrome mouse model are independent of any alterations in the oxytocinergic system caused by deletion of the Williams locus.


Sign in / Sign up

Export Citation Format

Share Document