scholarly journals Blind Visualization of Task-Related Networks From Visual Oddball Simultaneous EEG-fMRI Data: Spectral or Spatiospectral Model?

2021 ◽  
Vol 12 ◽  
Author(s):  
René Labounek ◽  
Zhuolin Wu ◽  
David A. Bridwell ◽  
Milan Brázdil ◽  
Jiří Jan ◽  
...  

Various disease conditions can alter EEG event-related responses and fMRI-BOLD signals. We hypothesized that event-related responses and their clinical alterations are imprinted in the EEG spectral domain as event-related (spatio)spectral patterns (ERSPat). We tested four EEG-fMRI fusion models utilizing EEG power spectra fluctuations (i.e., absolute spectral model - ASM; relative spectral model - RSM; absolute spatiospectral model - ASSM; and relative spatiospectral model - RSSM) for fully automated and blind visualization of task-related neural networks. Two (spatio)spectral patterns (high δ4 band and low β1 band) demonstrated significant negative linear relationship (pFWE < 0.05) to the frequent stimulus and three patterns (two low δ2 and δ3 bands, and narrow θ1 band) demonstrated significant positive relationship (p < 0.05) to the target stimulus. These patterns were identified as ERSPats. EEG-fMRI F-map of each δ4 model showed strong engagement of insula, cuneus, precuneus, basal ganglia, sensory-motor, motor and dorsal part of fronto-parietal control (FPCN) networks with fast HRF peak and noticeable trough. ASM and RSSM emphasized spatial statistics, and the relative power amplified the relationship to the frequent stimulus. For the δ4 model, we detected a reduced HRF peak amplitude and a magnified HRF trough amplitude in the frontal part of the FPCN, default mode network (DMN) and in the frontal white matter. The frequent-related β1 patterns visualized less significant and distinct suprathreshold spatial associations. Each θ1 model showed strong involvement of lateralized left-sided sensory-motor and motor networks with simultaneous basal ganglia co-activations and reduced HRF peak and amplified HRF trough in the frontal part of the FPCN and DMN. The ASM θ1 model preserved target-related EEG-fMRI associations in the dorsal part of the FPCN. For δ4, β1, and θ1 bands, all models provided high local F-statistics in expected regions. The most robust EEG-fMRI associations were observed for ASM and RSSM.

2013 ◽  
Vol 44 (1) ◽  
pp. 92-101 ◽  
Author(s):  
Sanja Tatalović Vorkapić ◽  
Meri Tadinac ◽  
Ivana Lučev

Abstract The aim of this study was to investigate the relationship between three temperament dimensions: strength of excitation, strength of inhibition and mobility measured by Pavlov’s Temperament Survey (PTS), and amplitudes and latencies of evoked brain potentials (N1, P2, N2, P3 & SW) measured by a visual oddball paradigm in two blocks. The participants were female psychology students (N=54) with mean age of 20. Significant positive correlations were determined between amplitudes of N1-P2-N2-P3 components and strength of excitation and mobility in the first and second block, mostly on parietal electrodes, as well as significant negative correlations of amplitudes of N1-P2-N2-P3 components and strength of inhibition. Considering measurement limitations important future study directions have been given.


2016 ◽  
Vol 26 (02) ◽  
pp. 1550038 ◽  
Author(s):  
Olivier Darbin ◽  
Xingxing Jin ◽  
Christof Von Wrangel ◽  
Kerstin Schwabe ◽  
Atsushi Nambu ◽  
...  

The function of the nigro-striatal pathway on neuronal entropy in the basal ganglia (BG) output nucleus, i.e. the entopeduncular nucleus (EPN) was investigated in the unilaterally 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson’s disease (PD). In both control subjects and subjects with 6-OHDA lesion of dopamine (DA) the nigro-striatal pathway, a histological hallmark for parkinsonism, neuronal entropy in EPN was maximal in neurons with firing rates ranging between 15 and 25[Formula: see text]Hz. In 6-OHDA lesioned rats, neuronal entropy in the EPN was specifically higher in neurons with firing rates above 25[Formula: see text]Hz. Our data establishes that the nigro-striatal pathway controls neuronal entropy in motor circuitry and that the parkinsonian condition is associated with abnormal relationship between firing rate and neuronal entropy in BG output nuclei. The neuronal firing rates and entropy relationship provide putative relevant electrophysiological information to investigate the sensory-motor processing in normal condition and conditions such as movement disorders.


2008 ◽  
Vol 25 (1) ◽  
pp. E8 ◽  
Author(s):  
W. Jeff Elias ◽  
Dibyendu Kumar Ray ◽  
John A. Jane

Dr. Lennart Heimer, the famous neuroanatomist of Swedish descent, died last year but left a legacy that will impact the neurosciences and potentially psychosurgery for years to come. He developed an anatomical technique for demonstrating the terminal boutons that helped to delineate basal forebrain anatomy. During these studies, he realized the relationship of basal forebrain structures to the limbic system, thus initiating the concept of the ventral striatum and parallel basal ganglia circuitry. Heimer excelled as a teacher as well and honed his brain dissection technique to one of the most effective tools for understanding neuroanatomy. His legendary sessions with neurosurgical residents resulted in his recognition as one of the world’s leading fiber tract dissectors. His gentle, engaging manner has been documented in several media formats.


2019 ◽  
Vol 62 (3) ◽  
pp. 193-197
Author(s):  
Tania Zastron ◽  
Simon S. Kessner ◽  
Karsten Hollander ◽  
Götz Thomalla ◽  
Karen Estelle Welman

2016 ◽  
Vol 64 (1) ◽  
pp. 102-108 ◽  
Author(s):  
Lindsay S. Nagamatsu ◽  
Andrea M. Weinstein ◽  
Kirk I. Erickson ◽  
Jason Fanning ◽  
Elizabeth A. Awick ◽  
...  

2020 ◽  
Author(s):  
Julia E. Stawarz ◽  
Jonathan P. Eastwood ◽  
Tai Phan ◽  
Imogen L. Gingell ◽  
Alfred Mallet ◽  
...  

<p>The Earth’s magnetosheath is filled with small-scale current sheets arising from turbulent dynamics in the plasma. Previous observations and simulations have provided evidence that such current sheets can be sites for magnetic reconnection. Recently, observations from the Magnetospheric Multiscale (MMS) mission have revealed that a novel form of “electron-only” reconnection can occur at these small-scale, turbulence-driven current sheets, in which ions do not appear to couple to the reconnected magnetic field to form ion jets. The presence of electron-only reconnection may facilitate dissipation of the turbulence, thereby influencing the partition of energy between ions and electrons, and can alter the nonlinear dynamics of the turbulence itself. In this study, we perform a survey of turbulent intervals in the Earth’s magnetosheath as observed by MMS in order to determine how common magnetic reconnection is in the turbulent magnetosheath and how it impacts the small-scale turbulent dynamics. The magnetic correlation length, which dictates the length of the turbulent current sheets, is short enough in most of the examined intervals for reconnection with reduced or absent ion jets to occur. Magnetic reconnection is found to be a common feature within these intervals, with a significant fraction of reconnecting current sheets showing evidence of sub-Alfvénic ion jets and super- Alfvénic electron jets, consistent with electron-only reconnection. Moreover, a subset of the intervals exhibit changes in the behavior of the small-scale magnetic power spectra, which may be related to the reconnecting current sheets. The results of the survey are compared with recent theoretical work on electron-only reconnection in turbulent plasmas.</p>


1980 ◽  
Vol 50 (1) ◽  
pp. 192-194 ◽  
Author(s):  
Mariko Osaka ◽  
Naoyuki Osaka

The relationship between intelligence and power spectra of visual evoked potential was investigated using 8 normal and 8 mentally retarded children as subjects. The results showed the power spectrum of mentally retarded has a peak at 4 to 6 Hz, whereas that of normal has two apparent peaks at 4 and 12 Hz. It appears the peak at 12 Hz reflects the difference of intelligence.


Geophysics ◽  
2013 ◽  
Vol 78 (2) ◽  
pp. KS41-KS49 ◽  
Author(s):  
Deborah Fagan ◽  
Kasper van Wijk ◽  
James Rutledge

Identifying individual subsurface faults in a larger fault system is important to characterize and understand the relationship between microseismicity and subsurface processes. This information can potentially help drive reservoir management and mitigate the risks of natural or induced seismicity. We have evaluated a method of statistically clustering power spectra from microseismic events associated with an enhanced oil recovery operation in southeast Utah. Specifically, we were able to provide a clear distinction within a set of events originally designated in the time domain as a single cluster and to identify evidence of en echelon faulting. Subtle time-domain differences between events were accentuated in the frequency domain. Power spectra based on the Fourier transform of the time-domain autocorrelation function were used, as this formulation results in statistically independent intensities and is supported by a full body of statistical theory upon which decision frameworks can be developed.


Sign in / Sign up

Export Citation Format

Share Document