scholarly journals Long-Term Motor Learning in the “Wild” With High Volume Video Game Data

2021 ◽  
Vol 15 ◽  
Author(s):  
Jennifer B. Listman ◽  
Jonathan S. Tsay ◽  
Hyosub E. Kim ◽  
Wayne E. Mackey ◽  
David J. Heeger

Motor learning occurs over long periods of practice during which motor acuity, the ability to execute actions more accurately, precisely, and in less time, improves. Laboratory-based studies of motor learning are typically limited to a small number of participants and a time frame of minutes to several hours per participant. There is a need to assess the generalizability of theories and findings from lab-based motor learning studies on larger samples and time scales. In addition, laboratory-based studies of motor learning use relatively simple motor tasks which participants are unlikely to be intrinsically motivated to learn, limiting the interpretation of their findings in more ecologically valid settings (“in the wild”). We studied the acquisition and longitudinal refinement of a complex sensorimotor skill embodied in a first-person shooter video game scenario, with a large sample size (N = 7174, 682,564 repeats of the 60 s game) over a period of months. Participants voluntarily practiced the gaming scenario for up to several hours per day up to 100 days. We found improvement in performance accuracy (quantified as hit rate) was modest over time but motor acuity (quantified as hits per second) improved considerably, with 40–60% retention from 1 day to the next. We observed steady improvements in motor acuity across multiple days of video game practice, unlike most motor learning tasks studied in the lab that hit a performance ceiling rather quickly. Learning rate was a non-linear function of baseline performance level, amount of daily practice, and to a lesser extent, number of days between practice sessions. In addition, we found that the benefit of additional practice on any given day was non-monotonic; the greatest improvements in motor acuity were evident with about an hour of practice and 90% of the learning benefit was achieved by practicing 30 min per day. Taken together, these results provide a proof-of-concept in studying motor skill acquisition outside the confines of the traditional laboratory, in the presence of unmeasured confounds, and provide new insights into how a complex motor skill is acquired in an ecologically valid setting and refined across much longer time scales than typically explored.

2021 ◽  
Author(s):  
Jennifer B Listman ◽  
Jonathan Tsay ◽  
Hyosub E Kim ◽  
Wayne E Mackey ◽  
David J Heeger

Motor learning occurs over long periods of practice during which motor acuity (the ability to execute actions more accurately, precisely, and within a shorter amount of time) improves. Laboratory-based motor learning studies are typically limited to a small number of participants and a time frame of minutes to several hours per participant. Thus, there is a need to assess the generalizability of theories and findings from lab-based motor learning studies on much larger samples across longer time scales. In addition, laboratory-based studies of motor learning use relatively simple motor tasks which participants are unlikely to be intrinsically motivated to learn, limiting the interpretation of their findings in more ecologically valid settings. We studied the acquisition and longitudinal refinement of a complex sensorimotor skill embodied in a first-person shooter video game scenario, with a large sample size (N = 7174 participants, 682,564 repeats of the 60 sec game) over a period of months. Participants voluntarily practiced the gaming scenario for as much as several hours per day up to 100 days. We found improvement in performance accuracy (quantified as hit rate) was modest over time but motor acuity (quantified as hits per second) improved considerably, with 40-60% retention from one day to the next. We observed steady improvements in motor acuity across multiple days of video game practice, unlike most motor learning tasks studied in the lab that hit a performance ceiling rather quickly. Learning rate was a nonlinear function of baseline performance level, amount of daily practice, and to a lesser extent, number of days between practice sessions. In addition, we found that the benefit of additional practice on any given day was non-monotonic; the greatest improvements in motor acuity were evident with about an hour of practice and 90% of the learning benefit was achieved by practicing 30 minutes per day. Taken together, these results provide a proof-of-concept in studying motor skill acquisition outside the confines of the traditional laboratory and provide new insights into how a complex motor skill is acquired in an ecologically valid setting and refined across much longer time scales than typically explored.


Author(s):  
Alynda N Wood

Motor learning is a core aspect of human life, and appears to be ubiquitous throughout the animal kingdom. Dopamine, a neuromodulator with a multifaceted role in synaptic plasticity, may be a key signaling molecule for motor skill learning. Though typically studied in the context of reward-based associative learning, dopamine appears to be necessary for some types of motor learning. Mesencephalic dopamine structures are highly conserved among vertebrates, as are some of their primary targets within the basal ganglia, a subcortical circuit important for motor learning and motor control. With a focus on the benefits of cross-species comparisons, this review examines how "model-free" and "model-based" computational frameworks for understanding dopamine's role in associative learning may be applied to motor learning. The hypotheses that dopamine could drive motor learning either by functioning as a reward prediction error, through passive facilitating of normal basal ganglia activity, or through other mechanisms are examined in light of new studies using humans, rodents, and songbirds. Additionally, new paradigms that could enhance our understanding of dopamine's role in motor learning by bridging the gap between the theoretical literature on motor learning in humans and other species are discussed.


2014 ◽  
Vol 112 (1) ◽  
pp. 156-164 ◽  
Author(s):  
James P. Coxon ◽  
Nicola M. Peat ◽  
Winston D. Byblow

Motor learning requires practice over a period of time and depends on brain plasticity, yet even for relatively simple movements, there are multiple practice strategies that can be used for skill acquisition. We investigated the role of intracortical inhibition in the primary motor cortex (M1) during motor skill learning. Event-related transcranial magnetic stimulation (TMS) was used to assess corticomotor excitability and inhibition thought to involve synaptic and extrasynaptic γ-aminobutyric acid (GABA). Short intracortical inhibition (SICI) was assessed using 1- and 2.5-ms interstimulus intervals (ISIs). Participants learned a novel, sequential pinch-grip task on a computer in either a repetitive or interleaved practice structure. Both practice structures showed equivalent levels of motor performance at the end of acquisition and at retention 1 wk later. There was a novel task-related modulation of 1-ms SICI. Repetitive practice elicited a greater reduction of 1- and 2.5-ms SICI, i.e., disinhibition, between rest and task acquisition, compared with interleaved practice. These novel findings support the use of a repetitive practice structure for motor learning because the associated effects within M1 have relevance for motor rehabilitation.


Autism ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 544-568 ◽  
Author(s):  
Anneliese Ruggeri ◽  
Alina Dancel ◽  
Robert Johnson ◽  
Barbara Sargent

Difficulty performing age-appropriate motor skills affects up to 83% of children with autism spectrum disorder. This systematic review examined the effect of motor and physical activity intervention on motor outcomes of children with autism spectrum disorder and the effect of motor learning strategies on motor skill acquisition, retention, and transfer. Six databases were searched from 2000 to 2019. Forty-one studies were included: 34 intervention studies and 7 motor learning studies. The overall quality of the evidence was low. Participants included 1173 children with autism spectrum disorder ranging from 3 to 19 years. Results from level II and III intervention studies supported that participation outcomes improved with a physical education intervention; activity outcomes improved with aquatic, motor activity, motor skill, and simulated horse riding interventions; and body structure and function outcomes improved with aquatic, exergaming, motor activity, motor skill, and simulated horse riding interventions. Results from level II and III motor learning studies supported that motor skill acquisition improved with visual, versus verbal, instructions but was not influenced by differences in instructional personnel. More rigorous research on motor intervention is needed with well-controlled study designs, adequate sample sizes, and manualized protocols. In addition, research on motor learning strategies is warranted as it generalizes across motor interventions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Minxin Cheng ◽  
Michael Anderson ◽  
Danielle E. Levac

Background: Motor impairments contribute to performance variability in children with cerebral palsy (CP) during motor skill learning. Non-immersive virtual environments (VEs) are popular interventions to promote motor learning in children with hemiplegic CP. Greater understanding of performance variability as compared to typically developing (TD) peers during motor learning in VEs may inform clinical decisions about practice dose and challenge progression.Purpose: (1) To quantify within-child (i.e., across different timepoints) and between-child (i.e., between children at the same timepoint) variability in motor skill acquisition, retention and transfer in a non-immersive VE in children with CP as compared to TD children; and (2) To explore the relationship between the amount of within-child variability during skill acquisition and learning outcomes.Methods: Secondary data analysis of 2 studies in which 13 children with hemiplegic CP and 67 TD children aged 7–14 years undertook repeated trials of a novel standing postural control task in acquisition, retention and transfer sessions. Changes in performance across trials and sessions in children with CP as compared to TD children and between younger (7–10 years) and older (11–14 years) children were assessed using mixed effects models. Raw scores were converted to z-scores to meet model distributional assumptions. Performance variability was quantified as the standard deviation of z-scores.Results: TD children outperformed children with CP and older children outperformed younger children at each session. Older children with CP had the least between-child variability in acquisition and the most in retention, while older TD children demonstrated the opposite pattern. Younger children with CP had consistently high between-child variability, with no difference between sessions. Within-child variability was highest in younger children, regardless of group. Within-child variability was more pronounced in TD children as compared to children with CP. The relationship between the amount of within-child variability in performance and performance outcome at acquisition, retention and transfer sessions was task-specific, with a positive correlation for 1 study and a negative correlation in the other.Conclusions: Findings, though preliminary and limited by small sample size, can inform subsequent research to explore VE-specific causes of performance variability, including differing movement execution requirements and individual characteristics such as motivation, attention and visuospatial abilities.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Kristel Yu Tiamco Bayani ◽  
Nikhilesh Natraj ◽  
Nada Khresdish ◽  
Justin Pargeter ◽  
Dietrich Stout ◽  
...  

AbstractStone toolmaking is a human motor skill which provides the earliest archeological evidence motor skill and social learning. Intentionally shaping a stone into a functional tool relies on the interaction of action observation and practice to support motor skill acquisition. The emergence of adaptive and efficient visuomotor processes during motor learning of such a novel motor skill requiring complex semantic understanding, like stone toolmaking, is not understood. Through the examination of eye movements and motor skill, the current study sought to evaluate the changes and relationship in perceptuomotor processes during motor learning and performance over 90 h of training. Participants’ gaze and motor performance were assessed before, during and following training. Gaze patterns reveal a transition from initially high gaze variability during initial observation to lower gaze variability after training. Perceptual changes were strongly associated with motor performance improvements suggesting a coupling of perceptual and motor processes during motor learning.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maximilian J. Wessel ◽  
Chang-hyun Park ◽  
Elena Beanato ◽  
Estelle A. Cuttaz ◽  
Jan E. Timmermann ◽  
...  

AbstractTranscranial direct current stimulation (tDCS)-based interventions for augmenting motor learning are gaining interest in systems neuroscience and clinical research. Current approaches focus largely on monofocal motorcortical stimulation. Innovative stimulation protocols, accounting for motor learning related brain network interactions also, may further enhance effect sizes. Here, we tested different stimulation approaches targeting the cerebro-cerebellar loop. Forty young, healthy participants trained a fine motor skill with concurrent tDCS in four sessions over two days, testing the following conditions: (1) monofocal motorcortical, (2) sham, (3) monofocal cerebellar, or (4) sequential multifocal motorcortico-cerebellar stimulation in a double-blind, parallel design. Skill retention was assessed after circa 10 and 20 days. Furthermore, potential underlying mechanisms were studied, applying paired-pulse transcranial magnetic stimulation and multimodal magnetic resonance imaging-based techniques. Multisession motorcortical stimulation facilitated skill acquisition, when compared with sham. The data failed to reveal beneficial effects of monofocal cerebellar or additive effects of sequential multifocal motorcortico-cerebellar stimulation. Multimodal multiple linear regression modelling identified baseline task performance and structural integrity of the bilateral superior cerebellar peduncle as the most influential predictors for training success. Multisession application of motorcortical tDCS in several daily sessions may further boost motor training efficiency. This has potential implications for future rehabilitation trials.


Author(s):  
Moritz Mödinger ◽  
Alexander Woll ◽  
Ingo Wagner

AbstractWhile studies have indicated that visual feedback promotes skill acquisition and motor learning in controlled settings and for various sports, less is known about its feasibility in physical education, which has specific needs and conditions. For this reason, a systematic literature review was conducted regarding video-based visual feedback in physical education. Out of 2030 initially examined studies, 11 matched the selection and quality criteria. The goal was to determine whether visual feedback can be effective regarding motor learning in physical education in primary and secondary schools, and to investigate whether different visual feedback variants (expert modeling and self-modeling), supported by verbal feedback, are more effective than verbal feedback alone. Subsequently, the different conditions (e.g., age, group size, duration) of the included studies were evaluated for their suitability for everyday applications. Video-based visual feedback seems to be effective to enhance motor learning in physical education and seems to be more effective than solely verbal feedback. However, the results show that the specific conditions (class size, scheduled lessons, available time, technical equipment, the digital literacy of teachers, and data protection) of a school environment must be considered before implementing visual video feedback in daily practice.


Sign in / Sign up

Export Citation Format

Share Document