scholarly journals Neuromorphic Computing Using NAND Flash Memory Architecture With Pulse Width Modulation Scheme

2020 ◽  
Vol 14 ◽  
Author(s):  
Sung-Tae Lee ◽  
Jong-Ho Lee
Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2784
Author(s):  
Gerardo Malavena ◽  
Alessandro Sottocornola Sottocornola Spinelli ◽  
Christian Monzio Monzio Compagnoni

In this work, we investigate the implementation of a neuromorphic digit classifier based on NOR Flash memory arrays as artificial synaptic arrays and exploiting a pulse-width modulation (PWM) scheme. Its performance is compared in presence of various noise sources against what achieved when a classical pulse-amplitude modulation (PAM) scheme is employed. First, by modeling the cell threshold voltage (VT) placement affected by program noise during a program-and-verify scheme based on incremental step pulse programming (ISPP), we show that the classifier truthfulness degradation due to the limited program accuracy achieved in the PWM case is considerably lower than that obtained with the PAM approach. Then, a similar analysis is carried out to investigate the classifier behavior after program in presence of cell VT instabilities due to random telegraph noise (RTN) and to temperature variations, leading again to results in favor of the PWM approach. In light of these results, the present work suggests a viable solution to overcome some of the more serious reliability issues of NOR Flash-based artificial neural networks, paving the way to the implementation of highly-reliable, noise-resilient neuromorphic systems.


2012 ◽  
Vol E95.C (5) ◽  
pp. 837-841 ◽  
Author(s):  
Se Hwan PARK ◽  
Yoon KIM ◽  
Wandong KIM ◽  
Joo Yun SEO ◽  
Hyungjin KIM ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 879
Author(s):  
Ruiquan He ◽  
Haihua Hu ◽  
Chunru Xiong ◽  
Guojun Han

The multilevel per cell technology and continued scaling down process technology significantly improves the storage density of NAND flash memory but also brings about a challenge in that data reliability degrades due to the serious noise. To ensure the data reliability, many noise mitigation technologies have been proposed. However, they only mitigate one of the noises of the NAND flash memory channel. In this paper, we consider all the main noises and present a novel neural network-assisted error correction (ANNAEC) scheme to increase the reliability of multi-level cell (MLC) NAND flash memory. To avoid using retention time as an input parameter of the neural network, we propose a relative log-likelihood ratio (LLR) to estimate the actual LLR. Then, we transform the bit detection into a clustering problem and propose to employ a neural network to learn the error characteristics of the NAND flash memory channel. Therefore, the trained neural network has optimized performances of bit error detection. Simulation results show that our proposed scheme can significantly improve the performance of the bit error detection and increase the endurance of NAND flash memory.


Sign in / Sign up

Export Citation Format

Share Document