scholarly journals Methylprednisolone Induces Neuro-Protective Effects via the Inhibition of A1 Astrocyte Activation in Traumatic Spinal Cord Injury Mouse Models

2021 ◽  
Vol 15 ◽  
Author(s):  
Hong-jun Zou ◽  
Shi-Wu Guo ◽  
Lin Zhu ◽  
Xu Xu ◽  
Jin-bo Liu

Traumatic spinal cord injury (TSCI) leads to pathological changes such as inflammation, edema, and neuronal apoptosis. Methylprednisolone (MP) is a glucocorticoid that has a variety of beneficial effects, including decreasing inflammation and ischemic reaction, as well as inhibiting lipid peroxidation. However, the efficacy and mechanism of MP in TSCI therapy is yet to be deciphered. In the present study, MP significantly attenuated the apoptotic effects of H2O2 in neuronal cells. Western blot analysis demonstrated that the levels of apoptotic related proteins, Bax and cleaved caspase-3, were reduced while levels of anti-apoptotic Bcl-2 were increased. In vivo TUNEL assays further demonstrated that MP effectively protected neuronal cells from apoptosis after TSCI, and was consistent with in vitro studies. Furthermore, we demonstrated that MP could decrease expression levels of IBA1, Il-1α, TNFα, and C3 and suppress A1 neurotoxic reactive astrocyte activation in TSCI mouse models. Neurological function was evaluated using the Basso Mouse Scale (BMS) and Footprint Test. Results demonstrated that the neurological function of MP-treated injured mice was significantly increased. In conclusion, our study demonstrated that MP could attenuate astrocyte cell death, decrease microglia activation, suppress A1 astrocytes activation, and promote functional recovery after acute TSCI in mouse models.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Sheng-Yu Cui ◽  
Wei Zhang ◽  
Zhi-Ming Cui ◽  
Hong Yi ◽  
Da-Wei Xu ◽  
...  

Abstract Background Spinal cord injury (SCI) is associated with health burden both at personal and societal levels. Recent assessments on the role of lncRNAs in SCI regulation have matured. Therefore, to comprehensively explore the function of lncRNA LEF1-AS1 in SCI, there is an urgent need to understand its occurrence and development. Methods Using in vitro experiments, we used lipopolysaccharide (LPS) to treat and establish the SCI model primarily on microglial cells. Gain- and loss of function assays of LEF1-AS1 and miR-222-5p were conducted. Cell viability and apoptosis of microglial cells were assessed via CCK8 assay and flow cytometry, respectively. Adult Sprague-Dawley (SD) rats were randomly divided into four groups: Control, SCI, sh-NC, and sh-LEF-AS1 groups. ELISA test was used to determine the expression of TNF-α and IL-6, whereas the protein level of apoptotic-related markers (Bcl-2, Bax, and cleaved caspase-3) was assessed using Western blot technique. Results We revealed that LncRNA LEF1-AS1 was distinctly upregulated, whereas miR-222-5p was significantly downregulated in LPS-treated SCI and microglial cells. However, LEF1-AS1 knockdown enhanced cell viability, inhibited apoptosis, as well as inflammation of LPS-mediated microglial cells. On the contrary, miR-222-5p upregulation decreased cell viability, promoted apoptosis, and inflammation of microglial cells. Mechanistically, LEF1-AS1 served as a competitive endogenous RNA (ceRNA) by sponging miR-222-5p, targeting RAMP3. RAMP3 overexpression attenuated LEF1-AS1-mediated protective effects on LPS-mediated microglial cells from apoptosis and inflammation. Conclusion In summary, these findings ascertain that knockdown of LEF1-AS1 impedes SCI progression via the miR-222-5p/RAMP3 axis.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Yuluo Rong ◽  
Chengyue Ji ◽  
Zhuanghui Wang ◽  
Xuhui Ge ◽  
Jiaxing Wang ◽  
...  

Abstract Background Spinal cord injury (SCI) is a severe traumatic disease which causes high disability and mortality rates. The molecular pathological features after spinal cord injury mainly involve the inflammatory response, microglial and neuronal apoptosis, abnormal proliferation of astrocytes, and the formation of glial scars. However, the microenvironmental changes after spinal cord injury are complex, and the interactions between glial cells and nerve cells remain unclear. Small extracellular vesicles (sEVs) may play a key role in cell communication by transporting RNA, proteins, and bioactive lipids between cells. Few studies have examined the intercellular communication of astrocytes through sEVs after SCI. The inflammatory signal released from astrocytes is known to initiate microglial activation, but its effects on neurons after SCI remain to be further clarified. Methods Electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blotting were applied to characterize sEVs. We examined microglial activation and neuronal apoptosis mediated by astrocyte activation in an experimental model of acute spinal cord injury and in cell culture in vitro. Results Our results indicated that astrocytes activated after spinal cord injury release CCL2, act on microglia and neuronal cells through the sEV pathway, and promote neuronal apoptosis and microglial activation after binding the CCR2. Subsequently, the activated microglia release IL-1β, which acts on neuronal cells, thereby further aggravating their apoptosis. Conclusion This study elucidates that astrocytes interact with microglia and neurons through the sEV pathway after SCI, enriching the mechanism of CCL2 in neuroinflammation and spinal neurodegeneration, and providing a new theoretical basis of CCL2 as a therapeutic target for SCI.


1988 ◽  
Vol 69 (3) ◽  
pp. 399-402 ◽  
Author(s):  
Joseph M. Piepmeier ◽  
N. Ross Jenkins

✓ Sixty-nine patients with traumatic spinal cord injuries were evaluated for changes in their functional neurological status at discharge from the hospital, and at 1 year, 3 years, and 5+ years following injury. The neurological examinations were used to classify patients' spinal cord injury according to the Frankel scale. This analysis revealed that the majority of improvement in neurological function occurred within the 1st year following injury; however, changes in the patients' status continued for many years. Follow-up examinations at an average of 3 years postinjury revealed that 23.3% of the patients continued to improve, whereas 7.1% had deteriorated compared to their status at 1 year. An examination at an average of 5+ years demonstrated further improvement in 12.5%, with 5.0% showing deterioration compared to the examinations at 3 years. These results demonstrate that, in patients with spinal trauma, significant changes in neurological function continue for many years.


2021 ◽  
Author(s):  
Jialong Qi ◽  
Tao Wang ◽  
Zhidong Zhang ◽  
Zongsheng Yin ◽  
Yiming Liu ◽  
...  

Study design: Spinal cord injury (SCI) rat model and cell model were established for in vivo and in vitro experiments. Functional assays were utilized to explore the role of the circRNAs derived from catenin beta 1 (mmu_circ_0001859, circ-Ctnnb1 herein) in regulating neuronal cell viability and apoptosis. Bioinformatics analysis and mechanism experiments were conducted to assess the underlying molecular mechanism of circ-Ctnnb1. Objective: We aimed to probe into the biological function of circ-Ctnnb1 in neuronal cells of SCI. Methods: The rat model of SCI and hypoxia-induced cell model were constructed to examine circ-Ctnnb1 expression in SCI through quantitative reverse transcription real-time polymerase chain reaction (RT-qPCR). Basso, Beattie and Bresnahan (BBB) score was utilized for evaluating the neurological function. Terminal-deoxynucleoitidyl Transferase Mediated Nick End labeling (TUNEL) assays were performed to assess the apoptosis of neuronal cells. RNase R and Actinomycin D (ActD) were used to treat cells to evaluate the stability of circ-Ctnnb1. Results: Circ-Ctnnb1 was highly expressed in SCI rat models and hypoxia-induced neuronal cells, and its deletion elevated the apoptosis rate of hypoxia-induced neuronal cells. Furthermore, circ-Ctnnb1 activated the Wnt/β-catenin signaling pathway via sponging mircoRNA-205-5p (miR-205-5p) to up-regulate Ctnnb1 and Wnt family member 2B (Wnt2b). Conclusion: Circ-Ctnnb1 promotes SCI through regulating Wnt/β-catenin signaling via modulating the miR-205-5p/Ctnnb1/Wnt2b axis.


2013 ◽  
Vol 72 (11) ◽  
pp. 1072-1089 ◽  
Author(s):  
Maja Radulovic ◽  
Hyesook Yoon ◽  
Nadya Larson ◽  
Jianmin Wu ◽  
Rachel Linbo ◽  
...  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Graham Ka Hon Shea ◽  
Paul Aarne Koljonen ◽  
Ying Shing Chan ◽  
Kenneth Man Chee Cheung

AbstractDegenerative cervical myelopathy (DCM) presents insidiously during middle-age with deterioration in neurological function. It accounts for the most common cause of non-traumatic spinal cord injury in developed countries and disease prevalence is expected to rise with the aging population. Whilst surgery can prevent further deterioration, biological therapies may be required to restore neurological function in advanced disease. Cell replacement therapy has been inordinately focused on treatment of traumatic spinal cord injury yet holds immense promise in DCM. We build upon this thesis by reviewing the pathophysiology of DCM as revealed by cadaveric and molecular studies. Loss of oligodendrocytes and neurons occurs via apoptosis. The tissue microenvironment in DCM prior to end-stage disease is distinct from that following acute trauma, and in many ways more favourable to receiving exogenous cells. We highlight clinical considerations for cell replacement in DCM such as selection of cell type, timing and method of delivery, as well as biological treatment adjuncts. Critically, disease models often fail to mimic features of human pathology. We discuss directions for translational research towards clinical application.


2005 ◽  
Vol 5 (4) ◽  
pp. S22
Author(s):  
Eric Francke ◽  
John Thaller ◽  
Brian Leo ◽  
D. Greg Anderson ◽  
Francis Shen ◽  
...  

1981 ◽  
Vol 55 (4) ◽  
pp. 501-510 ◽  
Author(s):  
Alfred C. Higgins ◽  
Robert D. Pearlstein ◽  
John B. Mullen ◽  
Blaine S. Nashold

✓ To study the acute effects of hyperbaric oxygen ventilation (HBO) on long-tract function following spinal cord trauma, the authors employed a technique for monitoring spinal cord evoked potentials (SCEP) as an objective measure of translesion neuronal conduction in cats subjected to transdural impact injuries of the spinal cord. Control animals subjected to injuries of a magnitude of 400 or 500 gm-cm occasionally demonstrated spontaneous return of translesion SCEP within 2 hours of injury when maintained by pentobarbital anesthesia and by ventilation with ambient room air at 1 atmosphere absolute pressure (1 ATA). Animals sustaining corresponding injuries but receiving immediate treatment with HBO at 2 ATA for a period of 3 hours following impact demonstrated variable responses to this treatment modality. Animals sustaining injuries of 400 gm-cm magnitude showed recovery of translesion SCEP in four of five cases, while animals sustaining injuries of 500 gm-cm magnitude responded to HBO treatment by recovery of SCEP no more frequently than did control animals. When the onset of HBO therapy was delayed by 2 hours following impact, there appeared to be no demonstrable protective effect on long-tract neuronal conduction mediated by HBO alone. The observations suggest that HBO treatments can mediate preservation of marginally injured neuronal elements of the spinal cord long tracts during the early phases of traumatic spinal cord injury. These protective effects may be based upon the reversal of focal tissue hypoxia, or by reduction of tissue edema, or possibly by both of these mechanisms. Increasing magnitudes of impact force and delay in the onset of HBO treatment markedly diminished the protective effects of HBO on long-tract neuronal conduction following traumatic spinal cord injury.


Sign in / Sign up

Export Citation Format

Share Document