scholarly journals Novel Neuroimaging Biomarker for Sleep Quality in Insomnia Disorder: A Hypothalamus Resting State Study

2021 ◽  
Vol 15 ◽  
Author(s):  
Shuang Ding ◽  
Lijuan Gao ◽  
Hanjiaerbieke Kukun ◽  
Kai Ai ◽  
Wei Zhao ◽  
...  

Despite striking progress in the understanding of the neurobiology of insomnia disorder (ID), about 40% of ID patients do not reach sustained remission with the primary treatments. It is necessary to reveal novel neuroimaging biomarkers for sleep quality in ID. The hypothalamus has a central role in sleep-wake regulation by communicating with different brain regions. However, the functional implications of hypothalamus circuitry with other brain areas remains largely unknown in ID. It may be speculated that dysfunctional circuitry in the hypothalamus is involved in the pathogenesis of ID. Thus, we investigated the different network organizations of the bilateral hypothalamus during the resting-state between 26 ID patients and 28 healthy controls (HC). Correlation analysis has been carried out to link the neuroimaging findings and Pittsburgh sleep quality index (PSQI) scores. Group comparisons reveal that the resting-state functional connectivity (RSFC) between the left hypothalamic region and a few other brain regions, including the medial prefrontal cortex (mPFC) and pallidum, are significantly higher in ID compared with HC. The right inferior temporal cortex showed reduced RSFC with the left hypothalamus. No significantly different RSFC between ID and HC was detected for the right hypothalamus. Positive correlations with PSQI scores were observed for RSFC strength between the left hypothalamus and bilateral mPFC (left: r = 0.2985, p = 0.0393; right: r = 0.3723, p = 0.0056). Similarly, the RSFC strength between the right hypothalamus and bilateral mPFC (left: r = 0.3980, p = 0.0029; right: r = 0.2972, p = 0.0291) also showed significant positive correlations with PSQI scores. In conclusion, we reveal a novel neuroimaging biomarker for sleep quality, i.e., the RSFC strength of the hypothalamus-mPFC pathway. Consistent with the hyperarousal model of ID, our results shed new insights into the implications of the hyper-connection within hypothalamus circuits in the pathology of the ID.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tammo Viering ◽  
Pieter J. Hoekstra ◽  
Alexandra Philipsen ◽  
Jilly Naaijen ◽  
Andrea Dietrich ◽  
...  

AbstractEmotion dysregulation is common in attention-deficit/hyperactivity disorder (ADHD). It is highly prevalent in young adult ADHD and related to reduced well-being and social impairments. Neuroimaging studies reported neural activity changes in ADHD in brain regions associated with emotion processing and regulation. It is however unknown whether deficits in emotion regulation relate to changes in functional brain network topology in these regions. We used a combination of graph analysis and structural equation modelling (SEM) to analyze resting-state functional connectivity in 147 well-characterized young adults with ADHD and age-matched healthy controls from the NeuroIMAGE database. Emotion dysregulation was gauged with four scales obtained from questionnaires and operationalized through a latent variable derived from SEM. Graph analysis was applied to resting-state data and network topology measures were entered into SEM models to identify brain regions whose local network integration and connectedness differed between subjects and was associated with emotion dysregulation. The latent variable of emotion dysregulation was characterized by scales gauging emotional distress, emotional symptoms, conduct symptoms, and emotional lability. In individuals with ADHD characterized by prominent hyperactivity-impulsivity, the latent emotion dysregulation variable was related to an increased clustering and local efficiency of the right insula. Thus, in the presence of hyperactivity-impulsivity, clustered network formation of the right insula may underpin emotion dysregulation in young adult ADHD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pavel Hok ◽  
Lenka Hvizdošová ◽  
Pavel Otruba ◽  
Michaela Kaiserová ◽  
Markéta Trnečková ◽  
...  

AbstractIn cervical dystonia, functional MRI (fMRI) evidence indicates changes in several resting state networks, which revert in part following the botulinum neurotoxin A (BoNT) therapy. Recently, the involvement of the cerebellum in dystonia has gained attention. The aim of our study was to compare connectivity between cerebellar subdivisions and the rest of the brain before and after BoNT treatment. Seventeen patients with cervical dystonia indicated for treatment with BoNT were enrolled (14 female, aged 50.2 ± 8.5 years, range 38–63 years). Clinical and fMRI examinations were carried out before and 4 weeks after BoNT injection. Clinical severity was evaluated using TWSTRS. Functional MRI data were acquired on a 1.5 T scanner during 8 min rest. Seed-based functional connectivity analysis was performed using data extracted from atlas-defined cerebellar areas in both datasets. Clinical scores demonstrated satisfactory BoNT effect. After treatment, connectivity decreased between the vermis lobule VIIIa and the left dorsal mesial frontal cortex. Positive correlations between the connectivity differences and the clinical improvement were detected for the right lobule VI, right crus II, vermis VIIIb and the right lobule IX. Our data provide evidence for modulation of cerebello-cortical connectivity resulting from successful treatment by botulinum neurotoxin.


2018 ◽  
Vol 30 (12) ◽  
pp. 1757-1772 ◽  
Author(s):  
Pedro Pinheiro-Chagas ◽  
Amy Daitch ◽  
Josef Parvizi ◽  
Stanislas Dehaene

Elementary arithmetic requires a complex interplay between several brain regions. The classical view, arising from fMRI, is that the intraparietal sulcus (IPS) and the superior parietal lobe (SPL) are the main hubs for arithmetic calculations. However, recent studies using intracranial electroencephalography have discovered a specific site, within the posterior inferior temporal cortex (pITG), that activates during visual perception of numerals, with widespread adjacent responses when numerals are used in calculation. Here, we reexamined the contribution of the IPS, SPL, and pITG to arithmetic by recording intracranial electroencephalography signals while participants solved addition problems. Behavioral results showed a classical problem size effect: RTs increased with the size of the operands. We then examined how high-frequency broadband (HFB) activity is modulated by problem size. As expected from previous fMRI findings, we showed that the total HFB activity in IPS and SPL sites increased with problem size. More surprisingly, pITG sites showed an initial burst of HFB activity that decreased as the operands got larger, yet with a constant integral over the whole trial, thus making these signals invisible to slow fMRI. Although parietal sites appear to have a more sustained function in arithmetic computations, the pITG may have a role of early identification of the problem difficulty, beyond merely digit recognition. Our results ask for a reevaluation of the current models of numerical cognition and reveal that the ventral temporal cortex contains regions specifically engaged in mathematical processing.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Yan Zhi ◽  
Yongsheng Yuan ◽  
Qianqian Si ◽  
Min Wang ◽  
Yuting Shen ◽  
...  

More and more evidence suggests that dopamine receptor D3 gene (DRD3) plays an important role in the clinical manifestations and the treatment of Parkinson’s disease (PD). DRD3 Ser9Gly polymorphism is the most frequently studied variant point. Our aim was to investigate the potential effect of DRD3 Ser9Gly polymorphism on modulating resting-state brain function and associative clinical manifestations in PD patients. We consecutively recruited 61 idiopathic PD patients and 47 healthy controls (HC) who were evaluated by clinical scales, genotyped for variant Ser9Gly in DRD3, and underwent resting-state functional magnetic resonance imaging. Based on DRD3 Ser9Gly polymorphism, PD patients and HCs were divided into four subgroups. Then, two-way analysis of covariance (ANCOVA) was applied to investigate main effects and interactions of PD and DRD3 Ser9Gly polymorphism on the brain function via amplitude of low-frequency fluctuations (ALFF) approach. The association between DRD3 Ser9Gly-modulated significantly different brain regions, and clinical manifestations were detected by Spearman’s correlations. PD patients exhibited decreased ALFF values in the right inferior occipital gyrus, lingual gyrus, and fusiform gyrus. A significant difference in the interaction of “groups × genotypes” was observed in the right medial frontal gyrus. The ALFF value of the cluster showing significant interactions was positively correlated with HAMD-17 scores (r=0.489, p=0.011) and anhedonia scores (r=0.512, p=0.008) in PD patients with the Ser/Gly or Gly/Gly genotypes. Therefore, D3 gene Ser9Gly polymorphism might be associated with the severity of depression characterized by anhedonia in PD patients.


2009 ◽  
Vol 24 (S1) ◽  
pp. 1-1 ◽  
Author(s):  
S. Borgwardt ◽  
P. Allen ◽  
S. Bhattacharyya ◽  
P. Fusar-Poli ◽  
J.A. Crippa ◽  
...  

Background:This study examined the effect of Delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) on brain activation during a motor inhibition task.Methods:Functional magnetic resonance imaging and behavioural measures were recorded while 15 healthy volunteers performed a Go/No-Go task following administration of either THC or CBD or placebo in a double-blind, pseudo-randomized, placebo-controlled repeated measures within-subject design.Results:Relative to placebo, THC attenuated activation in the right inferior frontal and the anterior cingulate gyrus. In contrast, CBD deactivated the left temporal cortex and insula. These effects were not related to changes in anxiety, intoxication, sedation, and psychotic symptoms.Conclusions:These data suggest that THC attenuates the engagement of brain regions that mediate response inhibition. CBD modulated function in regions not usually implicated in response inhibition.


2013 ◽  
Vol 31 (2) ◽  
pp. 197-209 ◽  
Author(s):  
BEVIL R. CONWAY

AbstractExplanations for color phenomena are often sought in the retina, lateral geniculate nucleus, and V1, yet it is becoming increasingly clear that a complete account will take us further along the visual-processing pathway. Working out which areas are involved is not trivial. Responses to S-cone activation are often assumed to indicate that an area or neuron is involved in color perception. However, work tracing S-cone signals into extrastriate cortex has challenged this assumption: S-cone responses have been found in brain regions, such as the middle temporal (MT) motion area, not thought to play a major role in color perception. Here, we review the processing of S-cone signals across cortex and present original data on S-cone responses measured with fMRI in alert macaque, focusing on one area in which S-cone signals seem likely to contribute to color (V4/posterior inferior temporal cortex) and on one area in which S signals are unlikely to play a role in color (MT). We advance a hypothesis that the S-cone signals in color-computing areas are required to achieve a balanced neural representation of perceptual color space, whereas those in noncolor-areas provide a cue to illumination (not luminance) and confer sensitivity to the chromatic contrast generated by natural daylight (shadows, illuminated by ambient sky, surrounded by direct sunlight). This sensitivity would facilitate the extraction of shape-from-shadow signals to benefit global scene analysis and motion perception.


1998 ◽  
Vol 10 (3) ◽  
pp. 303-315 ◽  
Author(s):  
C. J. Price ◽  
D. Howard ◽  
K. Patterson ◽  
E. A. Warburton ◽  
K. J. Friston ◽  
...  

Deep dyslexia is a striking reading disorder that results from left-hemisphere brain damage and is characterized by semantic errors in reading single words aloud (e.g., reading spirit as whisky). Two types of explanation for this syndrome have been advanced. One is that deep dyslexia results from a residual left-hemisphere reading system that has lost the ability to pronounce a printed word without reference to meaning. The second is that deep dyslexia reflects right-hemisphere word processing. Although previous attempts to adjudicate between these hypotheses have been inconclusive, the controversy can now be addressed by mapping functional anatomy. In this study, we demonstrate that reading by two deep dyslexic patients (CJ and JG) involves normal or enhanced activity in spared left-hemisphere regions associated with naming (Broca's area and the left posterior inferior temporal cortex) and with the meanings of words (the left posterior temporo-parietal cortex and the left anterior temporal cortex). In the right-hemisphere homologues of these regions, there was inconsistent activation within the normal group and between the deep dyslexic patients. One (CJ) showed enhanced activity (relative to the normals) in the right anterior inferior temporal cortex, the other (JG) in the right Broca's area, and both in the right frontal operculum. Although these differential right-hemisphere activations may have influenced the reading behavior of the patients, their activation patterns primarily reflect semantic and phonological systems in spared regions of the left hemisphere. These results preclude an explanation of deep dyslexia in terms of purely right-hemisphere word processing.


2011 ◽  
Vol 23 (11) ◽  
pp. 3355-3365 ◽  
Author(s):  
Jason A. Cromer ◽  
Jefferson E. Roy ◽  
Timothy J. Buschman ◽  
Earl K. Miller

Previous work has shown that neurons in the PFC show selectivity for learned categorical groupings. In contrast, brain regions lower in the visual hierarchy, such as inferior temporal cortex, do not seem to favor category information over information about physical appearance. However, the role of premotor cortex (PMC) in categorization has not been studied, despite evidence that PMC is strongly engaged by well-learned tasks and reflects learned rules. Here, we directly compare PFC neurons with PMC neurons during visual categorization. Unlike PFC neurons, relatively few PMC neurons distinguished between categories of visual images during a delayed match-to-category task. However, despite the lack of category information in the PMC, more than half of the neurons in both PFC and PMC reflected whether the category of a test image did or did not match the category of a sample image (i.e., had match information). Thus, PFC neurons represented all variables required to solve the cognitive problem, whereas PMC neurons instead represented only the final decision variable that drove the appropriate motor action required to obtain a reward. This dichotomy fits well with PFC's hypothesized role in learning arbitrary information and directing behavior as well as the PMC's role in motor planning.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Yu-Chen Chen ◽  
Jian Zhang ◽  
Xiao-Wei Li ◽  
Wenqing Xia ◽  
Xu Feng ◽  
...  

Objective. Subjective tinnitus is hypothesized to arise from aberrant neural activity; however, its neural bases are poorly understood. To identify aberrant neural networks involved in chronic tinnitus, we compared the resting-state functional magnetic resonance imaging (fMRI) patterns of tinnitus patients and healthy controls.Materials and Methods. Resting-state fMRI measurements were obtained from a group of chronic tinnitus patients (n=29) with normal hearing and well-matched healthy controls (n=30). Regional homogeneity (ReHo) analysis and functional connectivity analysis were used to identify abnormal brain activity; these abnormalities were compared to tinnitus distress.Results. Relative to healthy controls, tinnitus patients had significant greater ReHo values in several brain regions including the bilateral anterior insula (AI), left inferior frontal gyrus, and right supramarginal gyrus. Furthermore, the left AI showed enhanced functional connectivity with the left middle frontal gyrus (MFG), while the right AI had enhanced functional connectivity with the right MFG; these measures were positively correlated with Tinnitus Handicap Questionnaires (r=0.459,P=0.012andr=0.479,P=0.009, resp.).Conclusions. Chronic tinnitus patients showed abnormal intra- and interregional synchronization in several resting-state cerebral networks; these abnormalities were correlated with clinical tinnitus distress. These results suggest that tinnitus distress is exacerbated by attention networks that focus on internally generated phantom sounds.


Sign in / Sign up

Export Citation Format

Share Document