scholarly journals Altered Functional Connectivity in the Resting State Neostriatum After Complete Sleep Deprivation: Impairment of Motor Control and Regulatory Network

2021 ◽  
Vol 15 ◽  
Author(s):  
Haiteng Wang ◽  
Ke Yu ◽  
Tianyi Yang ◽  
Lingjing Zeng ◽  
Jialu Li ◽  
...  

Sleep loss not only compromises individual physiological functions but also induces a psychocognitive decline and even impairs the motor control and regulatory network. In this study, we analyzed whole-brain functional connectivity changes in the putamen and caudate nucleus as seed points in the neostriatum after 36 h of complete sleep deprivation in 30 healthy adult men by resting state functional magnetic resonance imaging to investigate the physiological mechanisms involved in impaired motor control and regulatory network in individuals in the sleep-deprived state. The functional connectivity between the putamen and the bilateral precentral, postcentral, superior temporal, and middle temporal gyrus, and the left caudate nucleus and the postcentral and inferior temporal gyrus were significantly reduced after 36 h of total sleep deprivation. This may contribute to impaired motor perception, fine motor control, and speech motor control in individuals. It may also provide some evidence for neurophysiological changes in the brain in the sleep-deprived state and shed new light on the study of the neostriatum in the basal ganglia.

CNS Spectrums ◽  
2020 ◽  
pp. 1-10 ◽  
Author(s):  
Francesca Trojsi ◽  
Federica Di Nardo ◽  
Mattia Siciliano ◽  
Giuseppina Caiazzo ◽  
Cinzia Femiano ◽  
...  

Abstract Objective. Advanced neuroimaging techniques may offer the potential to monitor disease progression in amyotrophic lateral sclerosis (ALS), a neurodegenerative, multisystem disease that still lacks therapeutic outcome measures. We aim to investigate longitudinal functional and structural magnetic resonance imaging (MRI) changes in a cohort of patients with ALS monitored for one year after diagnosis. Methods. Resting state functional MRI, diffusion tensor imaging (DTI), and voxel-based morphometry analyses were performed in 22 patients with ALS examined by six-monthly MRI scans over one year. Results. During the follow-up period, patients with ALS showed reduced functional connectivity only in some extramotor areas, such as the middle temporal gyrus in the left frontoparietal network after six months and in the left middle frontal gyrus in the default mode network after one year without showing longitudinal changes of cognitive functions. Moreover, after six months, we reported in the ALS group a decreased fractional anisotropy (P = .003, Bonferroni corrected) in the right uncinate fasciculus. Conversely, we did not reveal significant longitudinal changes of functional connectivity in the sensorimotor network, as well as of gray matter (GM) atrophy or of DTI metrics in motor areas, although clinical measures of motor disability showed significant decline throughout the three time points. Conclusion. Our findings highlighted that progressive impairment of extramotor frontotemporal networks may precede the appearance of executive and language dysfunctions and GM changes in ALS. Functional connectivity changes in cognitive resting state networks might represent candidate radiological markers of disease progression.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yingzhi Lu ◽  
Qi Zhao ◽  
Yingying Wang ◽  
Chenglin Zhou

Objective. This study aims at investigating differences in the spontaneous brain activity and functional connectivity in the sensorimotor system between ballroom dancers and nondancers, to further support the functional alteration in people with expertise. Materials and Methods. Twenty-three ballroom dancers and twenty-one matched novices with no dance experience were recruited in this study. Amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity, as methods for assessing resting-state functional magnetic resonance imaging (rs-fMRI) data, were used to reveal the resting-state brain function in these participants. Results. Compared to the novices, ballroom dancers showed increased ALFF in the left middle temporal gyrus, bilateral precentral gyrus, bilateral inferior frontal gyrus, left postcentral gyrus, left inferior temporal gyrus, right middle occipital gyrus, right superior temporal gyrus, and left middle frontal gyrus. The ballroom dancers also demonstrated lower ALFF in the left lingual gyrus and altered functional connectivity between the inferior frontal gyrus and temporal, parietal regions. Conclusions. Our results indicated that ballroom dancers showed elevated neural activity in sensorimotor regions relative to novices and functional alterations in frontal-temporal and frontal-parietal connectivity, which may reflect specific training experience related to ballroom dancing, including high-capacity action perception, attentional control, and movement adjustment.


2020 ◽  
Author(s):  
Jintao Wu ◽  
Qianxiang Zhou ◽  
Jiaxuan Li ◽  
Yang Chen ◽  
Shuyu Shao ◽  
...  

Abstract BackgroundCognitive abilities are impaired by sleep deprivation and can be recovered when sufficient sleep is obtained. Changes in alpha-band oscillations are considered to be highly related to sleep deprivation. The effect of sleep deprivation on brain activation and functional connectivity in the resting-state alpha band remains unclear. The purpose of this study was to investigate how sleep deprivation and recovery sleep could change resting-state alpha-band neural oscillations.MethodsIn this study, thirty young, healthy participants obtained approximately 8 h of normal sleep, followed by 36 h of sleep deprivation. On the following recovery night, subjects underwent recovery sleep. Resting-state EEG after normal sleep, sleep deprivation and recovery sleep was recorded. Power spectrum, source localization and functional connectivity analyses were used to investigate the changes in resting-state alpha-band activity after normal sleep, sleep deprivation and recovery sleep.ResultsThe results showed that the global alpha power spectrum decreased and source activation was notably reduced in the precuneus, posterior cingulate cortex, cingulate gyrus, and paracentral lobule after sleep deprivation. Functional connectivity analysis after sleep deprivation showed a weakened functional connectivity pattern in a widespread network with the precuneus and posterior cingulate cortex as the key nodes. Furthermore, the changes caused by sleep deprivation were reversed to a certain extent but not significantly after one night of sleep recovery, which may be due to inadequate time for recovery sleep.ConclusionsIn conclusion, large-scale resting-state alpha-band activation and functional connectivity were weakened after sleep deprivation, and the inhibition of default mode network function with the precuneus and posterior cingulate cortex as the pivotal nodes may be an important cause of cognitive impairment. These findings provide new insight into the physiological response of sleep deprivation and determine how sleep deprivation disrupts brain alpha-band oscillations.


2020 ◽  
Vol 225 (8) ◽  
pp. 2533-2551 ◽  
Author(s):  
Henrietta Howells ◽  
Luciano Simone ◽  
Elena Borra ◽  
Luca Fornia ◽  
Gabriella Cerri ◽  
...  

Abstract Cortico-cortical networks involved in motor control have been well defined in the macaque using a range of invasive techniques. The advent of neuroimaging has enabled non-invasive study of these large-scale functionally specialized networks in the human brain; however, assessing its accuracy in reproducing genuine anatomy is more challenging. We set out to assess the similarities and differences between connections of macaque motor control networks defined using axonal tracing and those reproduced using structural and functional connectivity techniques. We processed a cohort of macaques scanned in vivo that were made available by the open access PRIME-DE resource, to evaluate connectivity using diffusion imaging tractography and resting state functional connectivity (rs-FC). Sectors of the lateral grasping and exploratory oculomotor networks were defined anatomically on structural images, and connections were reproduced using different structural and functional approaches (probabilistic and deterministic whole-brain and seed-based tractography; group template and native space functional connectivity analysis). The results showed that parieto-frontal connections were best reproduced using both structural and functional connectivity techniques. Tractography showed lower sensitivity but better specificity in reproducing connections identified by tracer data. Functional connectivity analysis performed in native space had higher sensitivity but lower specificity and was better at identifying connections between intrasulcal ROIs than group-level analysis. Connections of AIP were most consistently reproduced, although those connected with prefrontal sectors were not identified. We finally compared diffusion MR modelling with histology based on an injection in AIP and speculate on anatomical bases for the observed false negatives. Our results highlight the utility of precise ex vivo techniques to support the accuracy of neuroimaging in reproducing connections, which is relevant also for human studies.


Neuroscience ◽  
2019 ◽  
Vol 398 ◽  
pp. 37-54 ◽  
Author(s):  
Rui Zhao ◽  
Xinxin Zhang ◽  
Yuanqiang Zhu ◽  
Ningbo Fei ◽  
Jinbo Sun ◽  
...  

2011 ◽  
Vol 23 (12) ◽  
pp. 3841-3854 ◽  
Author(s):  
Joost Wegman ◽  
Gabriele Janzen

Objects along a route can help us to successfully navigate through our surroundings. Previous neuroimaging research has shown that the parahippocampal gyrus (PHG) distinguishes between objects that were previously encountered at navigationally relevant locations (decision points) and irrelevant locations (nondecision points) during simple object recognition. This study aimed at unraveling how this neural marking of objects relevant for navigation is established during learning and postlearning rest. Twenty-four participants were scanned using fMRI while they were viewing a route through a virtual environment. Eye movements were measured, and brain responses were time-locked to viewing each object. The PHG showed increased responses to decision point objects compared with nondecision point objects during route learning. We compared functional connectivity between the PHG and the rest of the brain in a resting state scan postlearning with such a scan prelearning. Results show that functional connectivity between the PHG and the hippocampus is positively related to participants' self-reported navigational ability. On the other hand, connectivity with the caudate nucleus correlated negatively with navigational ability. These results are in line with a distinction between egocentric and allocentric spatial representations in the caudate nucleus and the hippocampus, respectively. Our results thus suggest a relation between navigational ability and a neural preference for a specific type of spatial representation. Together, these results show that the PHG is immediately involved in the encoding of navigationally relevant object information. Furthermore, they provide insight into the neural correlates of individual differences in spatial ability.


2018 ◽  
Vol 1688 ◽  
pp. 22-32 ◽  
Author(s):  
Huaze Xu ◽  
Hui Shen ◽  
Lubin Wang ◽  
Qi Zhong ◽  
Yu Lei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document