scholarly journals Structural Differences Across Multiple Visual Cortical Regions in the Absence of Cone Function in Congenital Achromatopsia

2021 ◽  
Vol 15 ◽  
Author(s):  
Rebecca Lowndes ◽  
Barbara Molz ◽  
Lucy Warriner ◽  
Anne Herbik ◽  
Pieter B. de Best ◽  
...  

Most individuals with congenital achromatopsia (ACHM) carry mutations that affect the retinal phototransduction pathway of cone photoreceptors, fundamental to both high acuity vision and colour perception. As the central fovea is occupied solely by cones, achromats have an absence of retinal input to the visual cortex and a small central area of blindness. Additionally, those with complete ACHM have no colour perception, and colour processing regions of the ventral cortex also lack typical chromatic signals from the cones. This study examined the cortical morphology (grey matter volume, cortical thickness, and cortical surface area) of multiple visual cortical regions in ACHM (n = 15) compared to normally sighted controls (n = 42) to determine the cortical changes that are associated with the retinal characteristics of ACHM. Surface-based morphometry was applied to T1-weighted MRI in atlas-defined early, ventral and dorsal visual regions of interest. Reduced grey matter volume in V1, V2, V3, and V4 was found in ACHM compared to controls, driven by a reduction in cortical surface area as there was no significant reduction in cortical thickness. Cortical surface area (but not thickness) was reduced in a wide range of areas (V1, V2, V3, TO1, V4, and LO1). Reduction in early visual areas with large foveal representations (V1, V2, and V3) suggests that the lack of foveal input to the visual cortex was a major driving factor in morphological changes in ACHM. However, the significant reduction in ventral area V4 coupled with the lack of difference in dorsal areas V3a and V3b suggest that deprivation of chromatic signals to visual cortex in ACHM may also contribute to changes in cortical morphology. This research shows that the congenital lack of cone input to the visual cortex can lead to widespread structural changes across multiple visual areas.

2020 ◽  
Author(s):  
Maryam Malekzadeh ◽  
Alireza Kashani

AbstractAlthough, asymmetry is a central organizational aspect of human brain, it has not been clearly described yet. Here, we have studied structural brain asymmetry in 1113 young adults using data obtained from Human Connectome Project. A significant rightward asymmetry in mean global cerebral cortical thickness, surface area and gray matter volume as well as volumes of cerebral white matter, cerebellar cortex and white matter, hippocampus, putamen, caudate nucleus, nucleus accumbens and amygdala was observed. Thalamus showed a leftward asymmetry. Regionally, most cerebral cortical regions show a significant rightward asymmetry in thickness. However, cortical surface area and gray matter volume are more evenly distributed between two hemispheres with almost half of the regions showing a leftward asymmetry. In addition, a strong correlation between cortical surface area and gray matter volume as well as their asymmetry indices was noted which results in concordant asymmetry patterns between cortical surface area and gray matter volume in most cortical regions.


2015 ◽  
Vol 46 (4) ◽  
pp. 891-896 ◽  
Author(s):  
V. Barker ◽  
C. Bois ◽  
E. C. Johnstone ◽  
D. G. C. Owens ◽  
H. C. Whalley ◽  
...  

BackgroundThere is now a well-established link between childhood adversity (CA) and schizophrenia. Similar structural abnormalities to those found in schizophrenia including alterations in grey-matter volume have also been shown in those who experience CA.MethodWe examined whether global estimates of cortical thickness or surface area were altered in those familial high-risk subjects who had been referred to a social worker or the Children's Panel compared to those who had not.ResultsWe found that the cortical surface area of those who were referred to the Children's Panel was significantly smaller than those who had not been referred, but cortical thickness was not significantly altered. There was also an effect of social work referral on cortical surface area but not on thickness.ConclusionsCortical surface area increases post-natally more than cortical thickness. Our findings suggest that CA can influence structural changes in the brain and it is likely to have a greater impact on cortical surface area than on cortical thickness.


2007 ◽  
Vol 97 (2) ◽  
pp. 1633-1641 ◽  
Author(s):  
Lotfi B. Merabet ◽  
Jascha D. Swisher ◽  
Stephanie A. McMains ◽  
Mark A. Halko ◽  
Amir Amedi ◽  
...  

The involvement of occipital cortex in sensory processing is not restricted solely to the visual modality. Tactile processing has been shown to modulate higher-order visual and multisensory integration areas in sighted as well as visually deprived subjects; however, the extent of involvement of early visual cortical areas remains unclear. To investigate this issue, we employed functional magnetic resonance imaging in normally sighted, briefly blindfolded subjects with well-defined visuotopic borders as they tactually explored and rated raised-dot patterns. Tactile task performance resulted in significant activation in primary visual cortex (V1) and deactivation of extrastriate cortical regions V2, V3, V3A, and hV4 with greater deactivation in dorsal subregions and higher visual areas. These results suggest that tactile processing affects occipital cortex via two distinct pathways: a suppressive top-down pathway descending through the visual cortical hierarchy and an excitatory pathway arising from outside the visual cortical hierarchy that drives area V1 directly.


2012 ◽  
Vol 109 (10) ◽  
pp. 3985-3990 ◽  
Author(s):  
T. E. Bakken ◽  
J. C. Roddey ◽  
S. Djurovic ◽  
N. Akshoomoff ◽  
D. G. Amaral ◽  
...  

2019 ◽  
Author(s):  
Kevin K. Sit ◽  
Michael J. Goard

ABSTRACTPerception of visual motion is important for a range of ethological behaviors in mammals. In primates, specific higher visual cortical regions are specialized for processing of coherent visual motion. However, the distribution of motion processing among visual cortical areas in mice is unclear, despite the powerful genetic tools available for measuring population neural activity. Here, we used widefield and 2-photon calcium imaging of transgenic mice expressing a calcium indicator in excitatory neurons to measure mesoscale and cellular responses to coherent motion across the visual cortex. Imaging of primary visual cortex (V1) and several higher visual areas (HVAs) during presentation of natural movies and random dot kinematograms (RDKs) revealed heterogeneous responses to coherent motion. Although coherent motion responses were observed throughout visual cortex, particular HVAs in the putative dorsal stream (PM, AL, AM) exhibited stronger responses than ventral stream areas (LM and LI). Moreover, beyond the differences between visual areas, there was considerable heterogeneity within each visual area. Individual visual areas exhibited an asymmetry across the vertical retinotopic axis (visual elevation), such that neurons representing the inferior visual field exhibited greater responses to coherent motion. These results indicate that processing of visual motion in mouse cortex is distributed unevenly across visual areas and exhibits a spatial bias within areas, potentially to support processing of optic flow during spatial navigation.


2018 ◽  
Vol 29 (2) ◽  
pp. 827-837 ◽  
Author(s):  
Riccardo Cafiero ◽  
Jens Brauer ◽  
Alfred Anwander ◽  
Angela D Friederici

2022 ◽  
Vol 15 ◽  
Author(s):  
Yash Patel ◽  
Nadine Parker ◽  
Giovanni A. Salum ◽  
Zdenka Pausova ◽  
Tomáš Paus

General psychopathology and cognition are likely to have a bidirectional influence on each other. Yet, the relationship between brain structure, psychopathology, and cognition remains unclear. This brief report investigates the association between structural properties of the cerebral cortex [surface area, cortical thickness, intracortical myelination indexed by the T1w/T2w ratio, and neurite density assessed by restriction spectrum imaging (RSI)] with general psychopathology and cognition in a sample of children from the Adolescent Brain Cognitive Development (ABCD) study. Higher levels of psychopathology and lower levels of cognitive ability were associated with a smaller cortical surface area. Inter-regionally—across the cerebral cortex—the strength of association between an area and psychopathology is strongly correlated with the strength of association between an area and cognition. Taken together, structural deviations particularly observed in the cortical surface area influence both psychopathology and cognition.


NeuroImage ◽  
2010 ◽  
Vol 49 (3) ◽  
pp. 2328-2339 ◽  
Author(s):  
Pedro A. Valdés-Hernández ◽  
Alejandro Ojeda-González ◽  
Eduardo Martínez-Montes ◽  
Agustín Lage-Castellanos ◽  
Trinidad Virués-Alba ◽  
...  

2020 ◽  
Vol 117 (22) ◽  
pp. 12411-12418 ◽  
Author(s):  
Nicholas Judd ◽  
Bruno Sauce ◽  
John Wiedenhoeft ◽  
Jeshua Tromp ◽  
Bader Chaarani ◽  
...  

Genetic factors and socioeconomic status (SES) inequalities play a large role in educational attainment, and both have been associated with variations in brain structure and cognition. However, genetics and SES are correlated, and no prior study has assessed their neural associations independently. Here we used a polygenic score for educational attainment (EduYears-PGS), as well as SES, in a longitudinal study of 551 adolescents to tease apart genetic and environmental associations with brain development and cognition. Subjects received a structural MRI scan at ages 14 and 19. At both time points, they performed three working memory (WM) tasks. SES and EduYears-PGS were correlated (r= 0.27) and had both common and independent associations with brain structure and cognition. Specifically, lower SES was related to less total cortical surface area and lower WM. EduYears-PGS was also related to total cortical surface area, but in addition had a regional association with surface area in the right parietal lobe, a region related to nonverbal cognitive functions, including mathematics, spatial cognition, and WM. SES, but not EduYears-PGS, was related to a change in total cortical surface area from age 14 to 19. This study demonstrates a regional association of EduYears-PGS and the independent prediction of SES with cognitive function and brain development. It suggests that the SES inequalities, in particular parental education, are related to global aspects of cortical development, and exert a persistent influence on brain development during adolescence.


Sign in / Sign up

Export Citation Format

Share Document