scholarly journals Metabotropic Glutamate Receptors 1 Regulates Rat Carotid Body Response to Acute Hypoxia via Presynaptic Mechanism

2021 ◽  
Vol 15 ◽  
Author(s):  
Chaohong Li ◽  
Baosheng Zhao ◽  
Chenlu Zhao ◽  
Lu Huang ◽  
Yuzhen Liu

Background: The carotid body (CB) plays a critical role in oxygen sensing; however, the role of glutamatergic signaling in the CB response to hypoxia remains uncertain. We previously found that functional multiple glutamate transporters and inotropic glutamate receptors (iGluRs) are expressed in the CB. The aim of this present research is to investigate the expression of group I metabotropic glutamate receptors (mGluRs) (mGluR1 and 5) in the CB and its physiological function in rat CB response to acute hypoxia.Methods: RT-PCR and immunostaining were conducted to examine the mRNA and protein expression of group I mGluRs in the human and rat CB. Immunofluorescence staining was performed to examine the cellular localization of mGluR1 in the rat CB. In vitro carotid sinus nerve (CSN) discharge recording was performed to detect the physiological function of mGluR1 in CB response to acute hypoxia.Results: We found that (1) mRNAs of mGluR1 and 5 were both expressed in the human and rat CB. (2) mGluR1 protein rather than mGluR5 protein was present in rat CB. (3) mGluR1 was distributed in type I cells of rat CB. (4) Activation of mGluR1 inhibited the hypoxia-induced enhancement of CSN activity (CSNA), as well as prolonged the latency time of CB response to hypoxia. (5) The inhibitory effect of mGluR1 activation on rat CB response to hypoxia could be blocked by GABAB receptor antagonist.Conclusion: Our findings reveal that mGluR1 in CB plays a presynaptic feedback inhibition on rat CB response to hypoxia.

2020 ◽  
Vol 295 (25) ◽  
pp. 8575-8588
Author(s):  
Saurabh Pandey ◽  
Namrata Ramsakha ◽  
Rohan Sharma ◽  
Ravinder Gulia ◽  
Prachi Ojha ◽  
...  

Group I metabotropic glutamate receptors (mGluRs) play important roles in various neuronal functions and have also been implicated in multiple neuropsychiatric disorders like fragile X syndrome, autism, and others. mGluR trafficking not only plays important roles in controlling the spatiotemporal localization of these receptors in the cell but also regulates the activity of these receptors. Despite this obvious significance, the cellular machineries that control the trafficking of group I metabotropic glutamate receptors in the central nervous system have not been studied in detail. The post-synaptic scaffolding protein tamalin has been shown to interact with group I mGluRs and also with many other proteins involved in protein trafficking in neurons. Using a molecular replacement approach in mouse hippocampal neurons, we show here that tamalin plays a critical role in the ligand-dependent internalization of mGluR1 and mGluR5, members of the group I mGluR family. Specifically, knockdown of endogenous tamalin inhibited the ligand-dependent internalization of these two receptors. Both N-terminal and C-terminal regions of tamalin played critical roles in mGluR1 endocytosis. Furthermore, we found that tamalin regulates mGluR1 internalization by interacting with S-SCAM, a protein that has been implicated in vesicular trafficking. Finally, we demonstrate that tamalin plays a critical role in mGluR-mediated internalization of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, a process believed to be the cellular correlate for mGluR-dependent synaptic plasticity. Taken together, these findings reveal a mechanistic role of tamalin in the trafficking of group I mGluRs and suggest its physiological implications in the brain.


2007 ◽  
Vol 97 (4) ◽  
pp. 3136-3141 ◽  
Author(s):  
Thomas Heinbockel ◽  
Kathryn A. Hamilton ◽  
Matthew Ennis

In the main olfactory bulb, several populations of granule cells (GCs) can be distinguished based on the soma location either superficially, interspersed with mitral cells within the mitral cell layer (MCL), or deeper, within the GC layer (GCL). Little is known about the physiological properties of superficial GCs (sGCs) versus deep GCs (dGCs). Here, we used patch-clamp recording methods to explore the role of Group I metabotropic glutamate receptors (mGluRs) in regulating the activity of GCs in slices from wildtype and mGluR−/− mutant mice. In wildtype mice, bath application of the selective Group I mGluR agonist DHPG depolarized and increased the firing rate of both GC subtypes. In the presence of blockers of fast synaptic transmission (APV, CNQX, gabazine), DHPG directly depolarized both GC subtypes, although the two GC subtypes responded differentially to DHPG in mGluR1−/− and mGluR5−/− mice. DHPG depolarized sGCs in slices from mGluR5−/− mice, although it had no effect on sGCs in slices from mGluR1−/− mice. By contrast, DHPG depolarized dGCs in slices from mGluR1−/− mice but had no effect on dGCs in slices from mGluR5−/− mice. Previous studies showed that mitral cells express mGluR1 but not mGluR5. The present results therefore suggest that sGCs are more similar to mitral cells than dGCs in terms of mGluR expression.


2012 ◽  
Vol 107 (4) ◽  
pp. 1058-1066 ◽  
Author(s):  
Peng Zhang ◽  
John E. Lisman

CaMKII and PSD-95 are the two most abundant postsynaptic proteins in the postsynaptic density (PSD). Overexpression of either can dramatically increase synaptic strength and saturate long-term potentiation (LTP). To do so, CaMKII must be activated, but the same is not true for PSD-95; expressing wild-type PSD-95 is sufficient. This raises the question of whether PSD-95's effects are simply an equilibrium process [increasing the number of AMPA receptor (AMPAR) slots] or whether activity is somehow involved. To examine this question, we blocked activity in cultured hippocampal slices with TTX and found that the effects of PSD-95 overexpression were greatly reduced. We next studied the type of receptors involved. The effects of PSD-95 were prevented by antagonists of group I metabotropic glutamate receptors (mGluRs) but not by antagonists of ionotropic glutamate receptors. The inhibition of PSD-95-induced strengthening was not simply a result of inhibition of PSD-95 synthesis. To understand the mechanisms involved, we tested the role of CaMKII. Overexpression of a CaMKII inhibitor, CN19, greatly reduced the effect of PSD-95. We conclude that PSD-95 cannot itself increase synaptic strength simply by increasing the number of AMPAR slots; rather, PSD-95's effects on synaptic strength require an activity-dependent process involving mGluR and CaMKII.


2021 ◽  
Vol 19 ◽  
Author(s):  
Khaled S. Abd-Elrahman ◽  
Shaarika Sarasija ◽  
Stephen S. G. Ferguson

: Glutamate, the major excitatory neurotramitter in the brain exerts its effects via both ionotropic glutamate receptors and metabotropic glutamate receptors (mGluRs). There are three subgroups of mGluRs, pre-synaptic Group II and Group III mGluRs and post-synaptic Group I mGluRs. mGluRs are ubiquitously expressed in the brain and their activation is poised upstream of a myriad of signaling pathways, resulting in their implication in the pathogenesis of various neurodegenerative diseases including, Alzheimer’s disease (AD). While the exact mechanism of AD etiology remains elusive, β-amyloid (Aβ) plaques and hyperphosphorylated tau tangles remain the histopathological hallmarks of AD. Though less electrically excitable, neuroglia are a major non-neuronal cell type in the brain and are composed of astrocytes, microglia, and oligodendrocytes. Astrocytes, microglia, and oligodendrocytes provide structural and metabolic support, active immune defence, and axonal support and sheathing, respectively. Interestingly, Aβ and hyperphosphorylated tau are known to disrupt the neuroglial homeostasis in the brain, pushing them towards a more neurotoxic state. In this review, we discuss what is currently known regarding the expression patterns of various mGluRs in neuroglia and how Aβ and tau alter the normal mGluR function in the neuroglia and contribute to the pathophysiology of AD.


Sign in / Sign up

Export Citation Format

Share Document